Какой механизм действия ферментов. Роль ферментов в организме человека. Как работают в организме

Пищеварительные ферменты – это вещества белковой природы, которые вырабатываются в желудочно-кишечном тракте. Они обеспечивают процесс переваривания пищи и стимулируют ее усвоение.

Основной функцией пищеварительных ферментов является разложение сложных веществ на более простые, которые легко усваиваются в кишечнике человека.

Действие белковых молекул направлено на следующие группы веществ:

  • белки и пептиды;
  • олиго- и полисахариды;
  • жиры, липиды;
  • нуклеотиды.

Виды ферментов

  1. Пепсин. Фермент представляет собой вещество, которое вырабатывается в желудке. Он воздействует на белковые молекулы в составе пищи, разлагая их на элементарные составляющие – аминокислоты.
  2. Трипсин и химотрипсин. Эти вещества входят в группу панкреатических ферментов, которые вырабатываются поджелудочной железой и доставляются в двенадцатиперстный кишечник. Здесь они также воздействуют на белковые молекулы.
  3. Амилаза. Фермент относится к веществам, разлагающим сахара (углеводы). Амилаза вырабатывается в ротовой полости и в тонком кишечнике. Она разлагает один из главных полисахаридов – крахмал. В результате получается небольшой углевод – мальтоза.
  4. Мальтаза. Фермент также воздействует на углеводы. Его специфическим субстратом является мальтоза. Она разлагается на 2 молекулы глюкозы, которые всасываются стенкой кишечника.
  5. Сахараза. Белок воздействует на другой распространенный дисахарид – сахарозу, которая содержится в любой высокоуглеводной пище. Углевод распадается на фруктозу и глюкозу, легко усваивающиеся организмом.
  6. Лактаза. Специфический фермент, который воздействует на углевод из молока – лактозу. При ее разложении получаются другие продукты – глюкоза и галактоза.
  7. Нуклеазы. Ферменты из данной группы воздействуют на нуклеиновые кислоты – ДНК и РНК, которые содержатся в пище. После их воздействия вещества распадаются на отдельные составляющие – нуклеотиды.
  8. Нуклеотидазы. Вторая группа ферментов, которая воздействует на нуклеиновые кислоты, называется нуклеотидазами. Они разлагают нуклеотиды с получением более мелких составляющих – нуклеозидов.
  9. Карбоксипептидаза. Фермент воздействует на небольшие белковые молекулы – пептиды. В результате такого процесса получаются отдельные аминокислоты.
  10. Липаза. Вещество разлагает жиры и липиды, поступающие в пищеварительную систему. При этом образуются их составные части – спирт, глицерин и жирные кислоты.

Недостаток пищеварительных ферментов

Недостаточная выработка пищеварительных ферментов – это серьезная проблема, которая требует врачебного вмешательства. При небольшом количестве эндогенных энзимов пища не сможет нормально перевариваться в кишечнике человека.

Если вещества не перевариваются, то они не могут всасываться в кишечнике. Пищеварительная система способна усвоить только небольшие фрагменты органических молекул. Большие компоненты, которые входят в состав еды, не смогут принести пользу человеку. Вследствие этого в организме может развиться недостаточность тех или иных веществ.

Нехватка углеводов или жиров приведет к тому, что организм лишится «топлива» для активной деятельности. Недостаточность белков лишает тело человека строительного материала, которым являются аминокислоты. Кроме того, нарушение пищеварения приводит к изменению характера кала, которое может неблагоприятно влиять на характер .

Причины

  • воспалительные процессы в кишечнике и желудке;
  • нарушения характера питания (переедание, недостаточная термическая обработка);
  • болезни обмена веществ;
  • панкреатит и другие болезни поджелудочной железы;
  • поражение печени и желчных путей;
  • врожденные патологии ферментной системы;
  • послеоперационные последствия (недостаточность энзимов из-за удаления части пищеварительной системы);
  • лекарственные воздействия на желудок и кишечник;
  • беременность;

Симптомы

Длительное сохранение недостаточности пищеварения сопровождается появлением общих симптомов, связанных с пониженным поступлением питательных веществ в организм. В данную группу входят следующие клинические проявления:

  • общая слабость;
  • снижение работоспособности;
  • головные боли;
  • нарушения сна;
  • повышенная раздражительность;
  • в тяжелых случаях – симптомы анемии из-за недостаточного усвоения железа.

Избыток пищеварительных ферментов

Избыток пищеварительных ферментов наиболее часто наблюдается при таком заболевании, как панкреатит. Состояние связано с гиперпродукцией этих веществ клетками поджелудочной железы и нарушением их выведения в кишечник. В связи с этим развивается активное воспаление в ткани органа, вызванное воздействием ферментов.

Признаками панкреатита могут быть:

  • сильные боли в области живота;
  • тошнота;
  • вздутие;
  • нарушение характера стула.

Часто развивается общее ухудшение состояния больного. Появляется общая слабость, раздражительность, снижается масса тела, нарушается нормальный сон.

Как выявить нарушения в синтезе пищеварительных ферментов?

Основные принципы терапии ферментных нарушений

Изменение выработки пищеварительных ферментов является поводом для обращения к врачу. После проведения комплексного обследования доктор определит причину возникновения нарушений и назначит соответствующее лечение. Самостоятельно бороться с патологией не рекомендуется.

Важным компонентом лечения является правильное питание. Больному назначается соответствующая диета, которая направлена на облегчение переваривания пищи. Необходимо избегать переедания, так как это провоцирует кишечные расстройства. Пациентам назначается лекарственная терапия, в том числе и заместительное лечение .

Конкретные средства и их дозировки подбираются врачом.

Ферменты (Энзимы) - специфические белки, биологически активные органические вещества, которые ускоряют химические реакции в клетке. Огромная роль ферментов в организме. Они могут увеличить скорость реакции более чем в десять раз. Это просто необходимо для нормальной жизнедеятельности клетки. А ферменты участвуют в каждой реакции.

В организме всех живых существ, включая даже самые примитивные микроорганизмы, обнаружены ферменты. Ферменты за счёт своей каталитической активности очень важны для нормальной работы систем нашего организма.

Ключевые ферменты в организме

В основе жизнедеятельности человеческого организма - тысячи протекающих в клетках химических реакций. Каждая из них осуществляется при участии специальных ускорителей - биокатализаторов, или ферментов.

Ферменты выступают в роли катализаторов практически во всех биохимических реакциях, протекающих в живых организмах. К 2013 году было описано более 5000 разных ферментов

Современной науке известно около двух тысяч биокатализаторов. Сосредоточим внимание на так называемых ключевых ферментах . К ним относятся наиболее существенные для жизнедеятельности организма биокатализаторы, «поломка» которых, как правило, приводит к возникновению заболеваний. Мы стремимся ответить на вопрос: как данный фермент действует в здоровом организме и что с ним происходит в процессе заболевания человека?

Известно, что важнейшие биополимеры, составляющие основу всего живого (из них построены все составные части клеток нашего тела и все ферменты), имеют белковую природу. В свою очередь, белки состоят из простых азотистых соединений - аминокислот, связанных между собой химическими связями - пептидными. В организме существуют специальные ферменты, расщепляющие эти связи путем присоединения молекул воды (реакция гидролиза). Такие ферменты называются пептидгидролазами. Под их влиянием в молекулах белка разрываются химические связи между аминокислотами и образуются обломки белковых молекул - пептиды, состоящие из различного числа аминокислот. Пептиды, обладая высокой биологической активностью, могут вызвать даже отравление организма. В конце концов, подвергаясь воздействию пептидгидролаз, пептиды либо теряют, либо существенно снижают свою биологическую активность.

Профессору В. Н. Ореховичу в 1979 и его ученикам удалось открыть, выделить в чистом виде и подробно изучить физические, химические и каталитические свойства одной из пептидгидролаз, ранее не известной биохимикам. Ныне она вошла в международный перечень под названием фермент карбоксикатепсин. Исследования позволили приблизиться к ответу на вопрос: зачем нужен карбоксикатепсин здоровому организму и что может произойти в результате тех или иных изменений его структуры.

Оказалось, что карбоксикатепсин участвует как в образовании пептида ангиотензина Б, повышающего артериальное давление, так и в разрушении другого пептида - брадикинина, который, наоборот, обладает свойством снижать артериальное давление.

Таким образом, карбоксикатепсин оказался ключевым катализатором, участвующим в работе одной из важнейших биохимических систем организма - системы регуляции давления крови. Чем большую активность проявляет карбоксикатепсин, тем выше концентрация ангиотензина П и ниже концентрация брадикинина, а это, в свою очередь, приводит к повышению артериального давления. Неудивительно, что у людей, страдающих гипертонической болезнью, активность карбокси-катепсина в крови повышена. Определение этого показателя помогает врачам оценивать эффективность лечебных мер, прогнозировать течение болезни.

Можно ли затормозить действие карбоксикатепсина непосредственно в организме человека и тем самым добиться снижения артериального давления? Исследования, проведенные в нашем институте, показали, что в природе существуют пептиды, которые способны связываться с карбоксикатепсином, не подвергаясь гидролизу, и лишать его тем самым возможности выполнять свойственную ему функцию.

В настоящее время ведутся работы по синтезу искусственных блокаторов (ингибиторов) карбоксикатепсина, которые предполагается использовать в качестве новых лечебных средств для борьбы с гипертонической болезнью.

К числу других важных ключевых ферментов, участвующих в биохимических превращениях азотистых веществ в организме человека, относятся аминоксидазы. Без них не обходятся реакции окисления так называемых биогенных аминов, к которым принадлежат многие химические передатчики нервных импульсов - нейромедиаторы. Поломки аминоксидаз ведут к расстройствам функций центральной и периферической нервной системы; химические блокаторы аминоксидаз уже применяются в клинической практике в качестве лечебных средств, например, при депрессивных состояниях.

В процессе изучения биологических функций аминоксидаз удалось открыть их неизвестное ранее свойство. Оказалось, что определенные химические изменения молекул этих ферментов сопровождаются качественными изменениями их каталитических свойств. Так, моноаминоксидазы, окисляющие биогенные моноамины (например, широко известные нейромедиаторы - норадреналин, серотонин и дофамин), после обработки окислителями частично утрачивают присущие им свойства. Но зато обнаруживают качественно новую способность разрушать диамины, некоторые аминокислоты и аминосахара, нуклеотиды и другие азотистые соединения, необходимые для жизнедеятельности клетки. Причем трансформировать моноаминоксидазы удается не только в пробирке (то есть в тех случаях, когда исследователи экспериментируют с очищенными препаратами ферментов), но и в организме животного, в котором предварительно моделируются различные патологические процессы.

В клетках тела человека моноаминоксидазы включены в состав биологических мембран - полупроницаемых перегородок, которые служат и оболочками клетки и делят каждую из них на обособленные отсеки, где протекают определенные реакции. Биомембраны особенно богаты легко окисляемыми жирами, которые находятся в полужидком состоянии. Многие заболевания сопровождаются накоплением в биомембранах избыточных количеств продуктов окисления жиров. Чрезмерно окисленные (переокисленные), они нарушают и нормальную проницаемость мембран и нормальную работу ферментов, входящих в их состав. К числу таких ферментов относятся и моноаминоксидазы.

В частности, при лучевом поражении происходит переокисление жиров в биомембранах клеток костного мозга, кишечника, печени и других органов, а моноаминоксидазы при этом не просто частично теряют свою полезную активность, но еще и приобретают качественно новое, вредное для организма свойство. Они начинают разрушать жизненно важные для клетки азотистые вещества. Свойство моно-аминоксидаз трансформировать свою биологическую активность проявляется как в опытах с очищенными ферментными препаратами, так и в живом организме. Причем выяснилось, что лечебные средства, используемые в борьбе с лучевыми поражениями, предотвращают и развитие качественных изменений ферментов.

Это очень важное свойство - обратимость трансформации моноаминоксидаз - было установлено в экспериментах, в ходе которых исследователи научились не только предупреждать трансформацию ферментов, но и устранять нарушения, возвращая к норме функции катализаторов и добиваясь определенного лечебного эффекта.

Пока речь идет об опытах на животных. Однако сегодня есть все основания считать, что активность аминоксидаз меняется и в организме человека, в частности при атеросклерозе. Поэтому изучение свойств аминоксидаз, а также химических веществ, при помощи которых можно воздействовать на их активность в организме человека с лечебными целями, в настоящее время продолжается с особой настойчивостью.

И последний пример. Хорошо известно, какую важную роль в жизнедеятельности нашего организма играют углеводы, а следовательно, и ключевые ферменты, ускоряющие их биохимические превращения. К числу таких катализаторов относится открытый в нашем институте фермент гамма-амилаза; он принимает участие в расщеплении химических связей между молекулами глюкозы (из них построены сложные молекулы гликогена). Врожденное отсутствие или недостаточность гамма-амилазы приводит к нарушению нормальных биохимических превращений гликогена. Его содержание в клетках жизненно важных органов ребенка возрастает, они теряют возможность выполнять свойственные им функции. Все эти изменения характеризуют тяжелейшее заболевание - гликогеноз.

В биохимических превращениях гликогена участвуют и другие ферменты.

Их врожденная недостаточность также ведет к гликогенозам. Чтобы своевременно и точно распознать, каким именно типом гликогеноза страдает ребенок (а это важно для выбора метода лечения и прогнозирования течения заболевания), необходимы исследования активности ряда ферментов, в том числе гамма-амилазы. Разработанные еще в Институте биологической и медицинской химии АМН СССР в 1970-х годах методы дифференциальной лабораторно-химической диагностики гликогенозов ныне до сих пор применяются в клинической практике.

По данным профессора В.З. ГОРКИНА

Сохранить в соцсетях:

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

Структура, свойства и механизм действия ферментов

Содержание

  • Структура ферментов
  • Механизм действия ферментов
  • Номенклатура ферментов
  • Классификация ферментов
  • Свойства ферментов
  • Клиническая ферментология
  • Литература

Краткая история ферментологии

Экспериментальное изучение ферментов в 19 веке совпало по времени с изучением процессов дрожжевого брожения, что нашло отражение в терминах "ферменты" и "энзимы". Название ферменты возникло от латинского слова fermentatio - брожение. Термин энзимы произошёл от понятия en zyme - из дрожжей. Вначале этим названиям придавали разный смысл, но в настоящее время они являются синонимами.

Первая ферментативная реакция осахаривания крахмала солодом была исследована отечественным учёным К.С. Кирхгоффом в 1814 году. Впоследствии были предприняты попытки выделения ферментов из дрожжевых клеток (Э. Бюхнер, 1897 год). В начале ХХ века Л. Михаэлис и М. Ментен разработали теорию ферментативного катализа. В 1926 году Д. Самнер впервые выделил очищенный препарат фермента уреазы в кристаллическом состоянии. В 1966 году Б. Меррифилду удалось осуществить искусственный синтез фермента РНК-азы.

Структура ферментов

Ферменты - это высокоспециализированные белки, способные повышать скорость реакции в живых организмах. Ферменты - биологические катализаторы.

Все ферменты являются белками, как правило, глобулярными. Они могут относиться как к простым, так и к сложным белкам. Белковая часть фермента может состоять из одной полипептидной цепи - мономерные белки - ферменты (например, пепсин). Ряд ферментов являются олигомерными белками, включают в свой состав несколько протомеров или субъединиц. Протомеры, объединяясь в олигомерную структуру, соединяются самопроизвольно непрочными нековалентными связями. В процессе объединения (кооперации) происходят структурные изменения отдельных протомеров, в результате чего активность фермента заметно возрастает. Отделение (диссоциация) протомеров и их объединение в олигомерный белок является механизмом регуляции активности ферментов.

Субъединицы (протомеры) в олигомерах могут быть или одинаковыми или отличающимися по первичной - третичной структуре (конформации). В случае соединения различных протомеров в олигомерную структуру фермента возникают множественные формы одного и того же фермента - изоферменты .

Изоферменты катализируют одну и ту же реакцию, но отличаются по набору субъединиц, физико-химическим свойствам, электрофоретической подвижности, по сродству к субстратам, активаторам, ингибиторам. Например, лактатдегидрогеназа (ЛДГ ) - фермент, окисляющий молочную кислоту в пировиноградную кислоту, является тетрамером. Он состоит из четырёх протомеров двух типов. Один вид протомеров обозначается Н (выделен из сердечной мышцы), второй протомер обозначается М (выделен из скелетной мускулатуры). Возможно 5 сочетаний этих протомеров в составе ЛДГ: Н 4 , Н 3 М, Н 2 М 2 , Н 1 М 3 , М 4 .

Биологическая роль изоферментов.

· Изоферменты обеспечивают протекание химических реакций в соответствии с условиями в разных органах. Так, изофермент ЛДГ 1 - обладает высоким сродством к кислороду, поэтому он активен в тканях с высокой скоростью окислительных реакций (эритроциты, миокард). Изофермент ЛДГ 5 активен в присутствии высокой концентрации лактата, наиболее характерен для ткани печени

· Выраженная органоспецифичность используется для диагностики заболеваний различных органов.

· Изоферменты изменяют свою активность с возрастом. Так, у плода при недостатке кислорода преобладает ЛДГ 3 , а с увеличением возраста, увеличением поступления кислорода возрастает доля ЛДГ 2 .

фермент активатор ингибитор энергия

Если фермент является сложным белком, то он состоит из белковой и небелковой части. Белковая часть является высокомолекулярной, термолябильной частью фермента и называется апоферментом . Он имеет своеобразную структуру и определяет специфичность ферментов.

Небелковая часть фермента называется кофактором ( коферментом ). Кофактором чаще всего являются ионы металлов, которые могут прочно связываться с апоферментом (например, Zn в ферменте карбоангидразе, Сu в ферменте цитохромоксидазе). Коферменты чаще всего являются органическими веществами, менее прочно связанными с апоферментом. Коферментами являются нуклеотиды НАД, ФАД. Кофермент - низкомолекулярная, термостабильная часть фермента. Его роль заключается в том, что он определяет пространственную укладку (конформацию) апофермента, и определяет его активность. Кофакторы могут переносить электроны, функциональные группы, участвовать в образовании дополнительных связей между ферментом и субстратом.

В функциональном отношении в ферменте принято выделять два важных участка в молекуле фермента: активный центр и аллостерический участок

Активный центр - это участок молекулы фермента, который взаимодействует с субстратом и участвует в каталитическом процессе. Активный центр фермента образован радикалами аминокислот, удалённых друг от друга в первичной структуре. Активный центр имеет трёхмерную укладку, чаще всего в его составе выявляются

ОН группы серина

SH - цистеина

NH 2 лизина

г-СООН глютаминовой кислоты

В активном центре различают две зоны - зону связывания с субстратом и каталитическую зону.

Зона связывания обычно имеет жёсткую структуру, к которой комплементарно присоединяется субстрат реакции. Например, трипсин расщепляет белки в участках, богатых положительно заряженной аминокислотой лизином, так как в его зоне связывания содержатся остатки отрицательно заряженной аспарагиновой кислоты.

Каталитическая зона - это участок активного центра, непосредственно воздействующий на субстрат и осуществляющий каталитическую функцию. Это зона более подвижна, в ней возможно изменение взаиморасположения функциональных групп.

В ряде ферментов (чаще олигомерных) кроме активного центра присутствует аллостерический участок - участок молекулы фермента, удалённый от активного центра и взаимодействующий не с субстратом, а с дополнительными веществами (регуляторами, эффекторами). В аллостерических ферментах в одной субъединице может находиться активный центр, в другой - аллостерический участок. Аллостерические ферменты изменяют свою активность следующим образом: эффектор (активатор, ингибитор) действует на аллостерическую субъединицу и изменяет её структуру. Затем изменение конформации аллостерической субъединицы по принципу кооперативных изменений опосредованно меняет структуру каталитической субъединицы, что сопровождается изменение активности фермента.

Механизм действия ферментов

Ферменты обладают рядом общекаталитических свойств:

· не смещают каталитическое равновесие

· не расходуются в процессе реакции

· катализируют только термодинамически реальные реакции. Такими реакциями являются те, в которых исходный энергетический запас молекул больше, чем финальный.

В ходе реакции преодолевается высокий энергетический барьер. Разница между энергией этого порога и исходным энергетическим уровнем - энергия активации.

Скорость ферментативных реакций определяется энергией активации и рядом других факторов.

Константа скорости химической реакции определяется по уравнению:

К = P * Z * e - ( Ea / RT )

К - константа скорости реакции

Р - пространственный (стерический) коэффициент

Z - количество взаимодействующих молекул

Е а - энергия активации

R - газовая постоянная

Т - универсальная абсолютная температура

е - основание натуральных логарифмов

В этом уравнении Z, е, R, T - постоянные величины, а Р и Еа - переменные. Причём, между скоростью реакции и стерическим коэффициентом зависимость прямая, а между скоростью и энергией активации - обратная и степенная зависимость (чем ниже Еа, тем выше скорость реакции).

Механизм действия ферментов сводится к увеличению ферментами стерического коэффициента и уменьшению энергии активации.

Снижение ферментами энергии активации

Например, энергия расщепления Н 2 О 2 без ферментов и катализаторов - 18 000 ккал на моль. Если используется платина и высокая температура, она снижается до 12 000 ккал/моль. При участии фермента каталазы энергия активации составляет лишь 2 000 ккал/моль.

Уменьшение Еа происходит в результате образования промежуточных фермент-субстратных комплексов по схеме: F + S <=> FS -комплекс > F + продукты реакции . Впервые возможность образования фермент - субстратных комплексов была доказана Михаэлисом, Ментеном. Впоследствии многие фермент-субстратные комплексы были выделены. Для объяснения высокой избирательности ферментов при взаимодействии с субстратом предложена теория " ключа и замка " Фишера . Согласно ей, фермент взаимодействует с субстратом только при абсолютном соответствии их друг другу (комплементарность) наподобие ключа и замка. Данная теория объясняла специфичность ферментов, но не раскрывала механизмы их воздействия на субстрат. Позже разработана теория индуцированного соответствия фермента и субстрата - теория Кошланда (теория "резиновой перчатки"). Её суть состоит в следующем: активный центр фермента сформирован и содержит все функциональные группы ещё до взаимодействия с субстратом. Однако эти функциональные группы находятся в неактивном состоянии. В момент присоединения субстрата ониндуцирует изменения положения, структуры радикалов в активном центре фермента. В результате активный центр фермента под действием субстрата переходит в активное состояние и, в свою очередь, начинает воздействовать на субстрат, т.е. происходит взаимодействие активного центра фермента и субстрата. Вследствие этого субстрат переходит в нестабильное, неустойчивое состояние, что ведёт к уменьшению энергии активации.

Взаимодействие фермента и субстрата может заключаться в реакциях нуклеофильного замещения, электрофильного замещения, дегидратации субстрата. Возможно также кратковременное ковалентное взаимодействие функциональных групп фермента с субстратом. В основном происходит геометрическая переориентация функциональных групп активного центра.

Увеличение ферментами стерического коэффициента

Стерический коэффициент вводится для реакций, в которых участвуют крупные молекулы, имеющие пространственную структуру. Стерический коэффициент показывает долю удачных столкновений активных молекул. Например, он равен 0,4, если 4 из 10 столкновений активных молекул привели к образованию продукта реакции.

Ферменты увеличивают стерический коэффициент, так как они изменяют строение молекулы субстрата в фермент - субстратном комплексе, в результате чего комплементарность фермента и субстрата возрастает. Кроме того, ферменты за счёт своих активных центров упорядочивают расположение молекул субстрата в пространстве (до взаимодействия с ферментом молекулы субстрата располагаются хаотично) и облегчают протекание реакции.

Номенклатура ферментов

Ферменты имеют несколько типов названий.

1) Тривиальные названия (трипсин, пепсин)

2) Рабочая номенклатура. В этом названии фермента присутствует окончание - аза, которое прибавляется:

· к названию субстрата (сахараза, амилаза),

· к виду связи, на которую действует фермент (пептидаза, гликозидаза),

· к типу реакции, процесса (синтетаза, гидролаза).

3) У каждого фермента есть классификационное название, в котором отражается тип реакции, вид субстрата и кофермента. Например: ЛДГ - L лактат-НАД + - оксидоредуктаза.

Классификация ферментов

Классификация ферментов разработана в 1961 году. Согласно классификации каждый фермент расположен в определённом классе, подклассе, подподклассе и имеет порядковый номер. В связи с этим каждый фермент имеет цифровой шифр, в котором первая цифра обозначает класс, вторая - подкласс, третья - подподкласс, четвертая - порядковый номер (ЛДГ: 1,1,1,27). Все ферменты классифицируются на 6 классов.

1. Оксидоредуктазы

2. Трансферазы

3. Гидролазы

4. Лиазы

5. Изомеразы

6. Синтетазы (лигазы)

Оксидоредуктазы .

Ферменты, катализирующие окислительно - востановительные процессы. Общий вид реакции: А ок + В вос = А вост +В ок. Этот класс ферментов включает несколько подклассов:

1 . Дегидрогиназы, катализируют реакции путём отщепления водорода от окисляемого вещества. Они могут быть аэробными (переносят водород на кислород) и анаэробными (переносят водород не на кислород, а на какое-то другое вещество).

2. Оксигеназы - ферменты катализирующие окисление путём присоединение кислорода к окисляемому веществу. Если присоединяется один атом кислорода, участвуют монооксигеназы, если два атома кислорода - диоксигеназы.

3. Пероксидазы - ферменты, катализирующие окисление веществ с участием пероксидов.

Трансферазы .

Ферменты, осуществляющие внутримолекулярный и межмолекулярный перенос функциональных групп с одного вещества на другое по схеме: АВ + С = А + ВС. Подклассы трансфераз выделяют в зависимости от вида переносимых групп: аминотрансферазы, метилтрансферазы, сульфотрансферазы, ацилтрансферазы (переносят остатки жирных кислот), фосфотрансферазы (переносят остатки фосфорной кислоты).

Гидролазы .

Ферменты этого класса катализируют разрыв химической связи с присоединением воды по месту разрыва, то есть реакции гидролиза по схеме: АВ + НОН = АН + ВОН. Подклассы гидролаз выделяют в зависимости от вида разрываемых связей: пептидазы расщепляют пептидные связи (пепсин), гликозидазы - гликозидные связи (амилаза), эстеразы - сложноэфирные связи (липаза).

Лиазы .

Лиазы катализируют разрыв химической связи без присоединения воды по месту разрыва. При этом в субстратах образуются двойные связи по схеме: АВ = А + В. Подклассы лиаз зависят от того, между какими атомами разрывается связь и какие вещества образуются. Альдолазы разрывают связь между двумя атомами углерода (например, фруктоза 1,6-ди-фосфатальдолаза "разрезает" фруктозу и две триозы). К лиазам относят ферменты декарбоксилазы (отщепляют углекислый газ), дегидратазы - "вырезают" молекулы воды.

Изомеразы .

Изомеразы катализируют взаимопревращения различных изомеров. Например, фосфогексоизимераза переводит фруктозу в глюкозу. К подклассам изомераз относятся мутазы (фосфоглюкомутаза переводит глюкозо - 1 - фосфат в глюкозо-6-фосфат), эпимеразы (например, переводят рибозу в ксилулозу), таутомеразы

Синтетазы ( лигазы ).

Ферменты этого класса катализируют реакции синтеза новых веществ за счёт энергии АТФ по схеме: А+В+АТФ = АВ. Например, глютаминсинтетаза соединяет глютаминовую кислоту, NH 3 + при участии АТФ с образованием глютамина.

Свойства ферментов

Ферменты, помимо общих с неорганическими катализаторами, свойств имеют определённые отличия от неорганических катализаторов. К ним относятся:

· более высокая активность

· более высокая специфичность

· более мягкие условия для катализа

· способность к регуляции активности

Высокая каталитическая активность ферментов .

Ферменты отличаются высокой каталитической активностью. Например, одна молекула карбоангидразы за одну минуту катализирует образование (или расщепление) 36 миллионов молекул угольной кислоты (Н 2 СО 3). Высокая активность ферментов объясняется механизмом их действия: они уменьшают энергию активации и увеличивают пространственный (стерический коэффициент). Высокая активность ферментов имеет важное биологическое значение, состоящее в том, что они обеспечивают высокую скорость химических реакций в организме.

Высокая специфичность ферментов .

Все ферменты обладают специфичностью, однако степень специфичности в разных ферментах различна. Выделяют несколько видов специфичности ферментов.

Абсолютная субстратная специфичность, при которой фермент действует только на одно определённое вещество. Например, фермент уреаза расщепляет только мочевину.

Абсолютная групповая специфичность, при которой фермент оказывает один и тот же каталитический эффект на группу соединений, близких по структуре. Например, фермент алкогольдегидрогеназа окисляет не только С 2 Н 5 ОН, но и его гомологи (метиловый, бутиловый и другие спирты).

Относительная групповая специфичность, при которой фермент осуществляет катализ разных классов органических веществ. Например, фермент трипсин проявляет пептидазную и эстеразную активность.

Стереохимическая специфичность (оптическая специфичность), при которой расщепляется только определённая форма изомеров (D, L формы, б, в, цис - трансизомеры). Например, ЛДГ действует только на L-лактат, L-аминокислотоксидазы действуют на L-изомеры аминокислот.

Высокая специфичность объясняется уникальной для каждого фермента структурой активного центра.

Термолябильность ферментов .

Термолябильность - зависимость активности ферментов от температуры. При повышении температуры от 0 до 40 градусов активность ферментов растёт согласно правилу Вант-Гоффа (при возрастании температуры на 10 градусов скорость реакции увеличивается в 2 - 4 раза). При дальнейшем повышении температуры активность ферментов начинает снижаться, что объясняется тепловой денатурацией белковой молекулы фермента. Графически термозависимость ферментов имеет вид:

Инактивация фермента при 0 градусов обратима, а при высокой температуре инактивация приобретает необратимый характер. Это свойство ферментов определяет максимальную скорость реакции в условиях температуры тела человека. Термолябильность ферментов должна учитываться в практической медицинской деятельности. Например, при проведении ферментативной реакции в пробирке, необходимо создавать оптимальную температуру. Это свойство ферментов может быть применено в криохирургии, когда сложная длительная операция проводится при снижении температуры тела, что замедляет скорость протекающих в организме реакций, снижает потребление кислорода тканями. Хранить ферментативные препараты необходимо при пониженной температуре. Для обезвреживания, обеззараживания микроорганизмов используют высокие температуры (автоклавирование, кипячение инструментария).

Фотолябильность .

Фотолябильность - зависимость активности ферментов от действия ультрафиолетовых лучей. УФЛ вызывают фотоденатурацию белковых молекул и уменьшают активность ферментов. Это свойство ферментов используют в бактерицидном эффекте ультрафиолетовых ламп.

Зависимость активности от рН .

У всех ферментов есть определённый интервал рН, в котором активность фермента максимальна - оптимум рН. Для многих ферментов оптимум около 7. В то же время, для пепсина оптимальная среда 1-2, для щелочной фосфатазы около 9. При отклонении рН от оптимума активность фермента снижается, что видно из графика. Это свойство ферментов объясняется изменением ионизации ионогенных групп в молекулах фермента, что ведёт к изменению ионных связей в молекуле белковой молекулы фермента. Это сопровождается изменением конформации молекулы фермента, а это, в свою очередь, приводит к изменению его активности. В условиях организма рН - зависимость определяет максимальную активность ферментов. Это свойство находит и практическое применение. Ферментативные реакции вне организма проводятся при оптимуме рН. При сниженной кислотности желудочного сока с лечебной целью назначают раствор НСl.

Зависимость скорости ферментативной реакции от концентрации фермента и концентрации субстрата

Зависимость скорости реакции от концентрации фермента и концентрации субстрата (кинетика ферментативных реакций) представлена на графиках.

график 1 график 2

В ферментативной реакции (F + S 2 1 FS > 3 F + P ) выделяют скорости трёх составляющих этапов:

1 - образование фермент-субстратного комплекса FS,

2 - обратный распад фермент - субстратного комплекса,

3 - распад фермент-субстратного комплекса с образованием продуктов реакции. Скорость каждой из этих реакций подчиняется закону действующих масс:

V 1 = К 1 [F] * [S]

V 2 = K 2 *

V 3 = K 3 *

В момент равновесия скорость реакции образования FS равна сумме скоростей его распада: V 1 = V 2 + V 3 . Из трёх этапов ферментативной реакции наиболее важным и медленным является третий, так как он связан с образованием продуктов реакции. По приведенной выше формуле найти скорость V 3 невозможно, так как фермент - субстратный комплекс очень неустойчив измерение его концентрациизатруднено. В связи с этим, Михаэлис-Ментен ввели Кm - константу Михаэлиса и преобразовали уравнение для измерения V 3 в новое уравнение, в котором присутствуют реально измеримые величины:

V 3 = K 3 * * [S] / Km + [S] или V 3 =V max * [S] / Km+ [S]

- исходная концентрация фермента

Кm - константа Михаэлиса.

Физический смысл Кm: К m = (К 2 3 ) 1 . Она показывает соотношение констант скоростей распада фермент-субстратного комплекса и константы скорости его образования.

Уравнение Михаэлиса-Ментен является универсальным. Оно иллюстрирует зависимость скорости реакции от от [S]

1. Зависимость скорости реакции от концентрации субстрата. Эта зависимость выявляется при малых концентрациях субстрата [S]

V 3 = K 3* [ F 0 ] * [ S ] / Km .

В данном уравнении K 3 , F 0 ], Km - константы и могут быть заменены новой константой К*. Таким образом, при малой концентрации субстрата скорость реакции прямо пропорциональна этой концентрации

V 3 = K * * [ S ].

Эта зависимость соответствует первому участку графика 2.

2. Зависимость скорости от концентрации фермента проявляется при высокой концентрации субстрата.

S?Km.

В этом случае можно пренебречь Km и уравнение преобразуется в следующее:

V 3 = K 3* (([ F 0 ] * [ S ]) / [ S ]) = K 3* [ F 0 ] = V max .

Таким образом, при высокой концентрации субстрата скорость реакции определяется концентрацией фермента и достигает максимального значения

V 3 = K 3 [ F 0 ] = V max . (третий участок графика 2).

3. Позволяет определить численное значение Km при условии V 3 = V max /2. В этом случае уравнение приобретает вид:

V max /2 = ((V max * [S]) /Km+ [S]), откуда следует, что Km= [S]

Таким образом, Кm численно равна концентрации субстрата при скорости реакции, равной половине максимальной. Кm является очень важной характеристикой фермента, она измеряется в молях (10 -2 - 10 -6 моль) и характеризуют специфичность фермента: чем ниже Km, тем выше специфичность фермента.

Графическое определение константы Михаэлиса .

Удобнее использовать график, представляющий прямую линию.

Такой график предложен Лайнуивером - Берком (график двойных обратных величин), который соответствует обратному уравнению Михаэлиса - Ментен

Зависимость скорости ферментативных реакций от присутствия активаторов и ингибиторов

Активаторы - вещества, повышающие скорость ферментативных реакций. Различают специфические активаторы, повышающие активность одного фермента (НСl - активатор пепсиногена) и неспецифические активаторы, увеличивающие активность целого ряда ферментов (ионы Mg - активаторы гексокиназы, К, Na - АТФ-азы и других ферментов). В качестве активаторов могут служить ионы металлов, метаболиты, нуклеотиды.

Механизм действия активаторов

1. Достраивание активного центра фермента, в результате чего облегчается взаимодействие фермента с субстратом. Таким механизмом обладают в основном ионы металлов.

2. Аллостерический активатор взаимодействует с аллостерическим участком (субъединицей) фермента, через его изменения опосредованно изменяет структуру активного центра и увеличивает активность фермента. Аллостерическим эффектом обладают метаболиты ферментативных реакций, АТФ.

3. Аллостерический механизм может сочетаться с изменением олигомерности фермента. Под действием активатора происходит объединение нескольких субъединиц в олигомерную форму, что резко увеличивает активность фермента. Например, изоцитрат является активатором фермента ацетил-КоА карбоксилазы.

4. Фосфолирирование - дефосфолирирование ферментов относится к обратимой модификации ферментов. Присоединение Н 3 РО 4 чаще всего резко увеличивает активность фермента. Например, два неактивных димера фермента фосфорилазы соединяются с четырьмя молекулами АТФ и образуют активную тетрамерную фосфорилированную форму фермента. Фосфолирирование ферментов может сочетаться с изменением их олигомерности. В некоторых случаях фосфорилирование фермента, наоборот, снижает его активность (например, фосфорилирование фермента гликогенсинтетазы)

5. Частичный протеолиз (необратимая модификация). При этом механизме от неактивной формы фермента (профермента) отщепляется фрагмент молекулы, блокирующий активный центр фермента. Например, неактивный пепсиноген под действием HCL переходит в активный пепсин.

Ингибиторы - вещества, понижающие активность фермента.

По специфичности выделяют специфичные и неспецифичные ингибиторы

По обратимости эффекта различают обратимые и необратимые ингибиторы.

По месту действия встречаются ингибиторы, действующие на активный центр и вне активного центра.

По механизму действия различают на конкурентные и неконкурентные ингибиторы.

Конкурентное ингибирование .

Ингибиторы этого типа имеют структуру, близкую к структуре субстрата. В силу этого ингибиторы и субстрат конкурируют за связывание активного центра фермента. Конкурентное ингибирование - это обратимое ингибирование Эффект конкурентного ингибитора может быть уменьшен путём повышения концентрации субстрата реакции

Примером конкурентного ингибирования может служить угнетение активности сукцинатдегидрогеназы, катализирующей окисление дикарбоновой янтарной кислоты, дикарбоновой малоновой кислотой, сходной по структуре с янтарной кислотой.

Принцип конкурентного ингибирования широко используется при создании лекарственных средств. Например, сульфаниламидные препараты имеют структуру, близкую к структуре парааминобензойной кислоты, необходимой для роста микроорганизмов. Сульфаниламиды блокируют ферменты микроорганизмов, необходимые для усвоения парааминобензойной кислоты. Некоторые противоопухолевые препараты являются аналогами азотистых оснований и, тем самым, ингибируют синтез нуклеиновых кислот (фторурацил).

Графически конкурентное ингибирование имеет вид:

Неконкурентное ингибирование .

Неконкурентные ингибиторы структурно не имеют схожести с субстратами реакций и поэтому не могут вытесняться при высокой концентрации субстрата. Существует несколько вариантов действия неконкурентных ингибиторов:

1. Блокирование функциональной группы активного центра фермента и, вследствие этого, уменьшение активности. Например, активность SН - групп могут связывать тиоловые яды обратимо (соли металлов, ртути, свинца) и необратимо (монойодацетат). Эффект ингибирования тиоловых ингибиторов может быть уменьшен введением добавочных веществ, богатых SH группами (например, унитиол). Встречаются и используются сериновые ингибиторы, блокирующие ОН - группы активного центра ферментов. Таким эффектом обладают органические фосфофторсодержащие вещества. Эти вещества могут, в частности, ингибировать ОН - группы в ферменте ацетилхолинэстеразе, разрушающей нейромедиатор ацетилхолин.

2. Блокирование ионов металлов, входящих в состав активного центра ферментов. Например, цианиды блокируют атомы железа, ЭДТА (этилендиаминтетраацетат) блокирует ионы Са, Mg.

3. Аллостерический ингибитор взаимодействует с аллостерическим участком, опосредованно через него по принципу кооперативности, меняя структуру и активность каталитического участка. Графически неконкурентное ингибирование имеет вид:

Максимальная скорость реакции при неконкурентном ингибировании не может быть достигнута путём повышения концентрации субстрата.

Регуляция активности ферментов в процессе метаболизма

Адаптация организма к меняющимся условиям (режим питания, экологические воздействия и пр.) возможна благодаря изменению активности ферментов. Существует несколько возможностей регуляции скорости ферментных реакций в организме:

1. Изменение скорости синтеза ферментов (этот механизм требует длительного отрезка времени).

2. Увеличение доступности субстрата и фермент путём изменения проницаемости клеточных мембран.

3. Изменение активности ферментов, уже имеющихся в клетках и тканях. Этот механизм осуществляется с большой скоростью и носит обратимый характер.

В многоступенчатых ферментативных процессах выделяют регуляторные, ключевые ферменты, которые ограничивают суммарную скорость процесса. Чаще всего это ферменты начальной и конечной стадий процесса. Изменение активности ключевых ферментов происходит по различным механизмам.

1. Аллостерический механизм:

2. Изменение олигомерности фермента:

Мономеры не активные - олигомеры активные

3. Фосфолирирование - дефосфорилирование:

Фермент (неактивный) + Н 3 РО 4 - фосфорилированный активный фермент.

В клетках широко распространён авторегуляторный механизм. Авторегуляторным механизмом является, в частности, ретроингибирование, при котором продукты ферментативного процесса угнетают ферменты начальных стадий. Например, высокие концентрации пуриновых и пиримидиновых нуклеотидов угнетают начальные в стадии их синтеза.

Иногда исходные субстраты активируют конечные ферменты, на схеме: субстрат А активирует F 3 . Например, активная форма глюкозы (глюкозо-6-фосфат) активирует конечный фермент синтеза гликогена из глюкозы (гликогенсинтетазу).

Структурная организация ферментов в клетке

Слаженность обменных процессов в организме возможна благодаря структурной разобщенности ферментов в клетках. Отдельные ферменты располагаются в тех или иных внутриклеточных структурах - компартментализация . Например, в плазматической мембране активен фермент калий - натриевая АТФ-аза. В митохондриях активны ферменты окислительных реакций (сукцинатдегидрогеназа, цитохромоксидаза). В ядре активны ферменты синтеза нуклеиновых кислот (ДНК-полимераза). В лизосомах активны ферменты расщепления различных веществ (РНК - аза, фосфатаза и другие).

Ферменты, наиболее активные в данной клеточной структуре, называются индикаторными или маркерными ферментами. Их определение в клинической практике отражает глубину структурных повреждений ткани. Некоторые ферменты объединяются в полиферментные комплексы, например, пируватдегидрогеназный комплекс (ПДК), осуществляющий окисление пировиноградной кислоты.

Принципы обнаружения и количественного определения ферментов :

Обнаружение ферментов основано на их высокой специфичности. Ферменты обнаруживают по производимому ими действию, т.е. по факту протекания той реакции, которую катализирует данный фермент. Например, амилазу обнаруживают по реакции расщепления крахмала до глюкозы.

Критериями протекания ферментативной реакции могут быть:

· исчезновение субстрата реакции

· появление продуктов реакции

· изменение оптических свойств кофермента.

Количественное определение ферментов

Так как концентрация ферментов в клетках очень низка, то определяют не их истинную концентрацию, а о количестве фермента судят косвенно, по активности фермента.

Активность ферментов оценивают по скорости ферментативной реакции, протекающей в оптимальных условиях (оптимум температуры, РН, избыточно высокая концентрация субстрата). В этих условиях скорость реакции прямо пропорциональна концентрации фермента (V= K 3 ).

Единицы активности ( количества ) фермента

В клинической практике используют несколько единиц активности фермента.

1. Международная единица - то количество фермента, которое катализирует превращение 1 микромоля субстрата за минуту при температуре 25 0 С.

2. Катал (в системе СИ) - то количество фермента, которое катализирует превращение 1 моля субстрата за секунду.

3. Удельная активность - отношение активности фермента к массе белка фермента.

4. Молекулярная активность фермента показывает, сколько молекул субстрата превращается под действием 1 молекулы фермента.

Клиническая ферментология

Применение сведений о ферментах в медицинской практике составляет раздел медицинской энзимологии. Она включает 3 раздела:

1. Энзимодиагностика

2. Энзимопотология

3. Энзимотерапия

Энзимодиагностика - раздел, изучающий возможности исследования активности ферментов для диагностики заболеваний. Для оценки повреждения отдельных тканей используют органоспецифические ферменты, изоферменты.

В педиатрической практике при проведении ферментодиагностики необходимо учитывать детские особенности. У детей активность некоторых ферментов выше, чем у взрослых, Например, высокая активность ЛДГ отражает преобладание анаэробных процессов в раннем постнатальном периоде. Содержание трансаминаз в плазме крови детей повышено в результате увеличенной сосудисто-тканевой проницаемости. Активность глюкоза-6-фосфатдегидрогеназы увеличена в результате усиленного распада эритроцитов. Активность других ферментов, наоборот, ниже, чем у взрослых. Например, активность пепсина, ферментов поджелудочной железы (липазы, амилазы) снижена в силу незрелости секреторных клеток.

С возрастом возможно перераспределение отдельных изоферментов. Так, у детей преобладает ЛДГ 3 (более анаэробная форма), а у взрослых ЛДГ 2 (более аэробная форма).

Энзимопатология - раздел ферментологии, изучающий заболевания, ведущим механизмом развития которых является нарушение активности ферментов. К ним относятся нарушения обмена углеводов (галактоземия, гликогенозы, мукополисахаридозы), аминокислот (фенилкетонурия, цистинурия), нуклеотидов (оротатацидурия), порфиринов (порфирии).

Энзимотерапия - раздел ферментологии, изучающий применение ферментов, коферментов, активаторов, ингибиторов с лечебными целями. Ферменты могут применяться с заместительной целью (пепсин, ферменты поджелудочной железы), с литической целью для удаления некротических масс, тромбов, для разжижения вязких экссудатов.

Литература

1. Авдеева, Л.В. Биохимия: Учебник / Л.В. Авдеева, Т.Л. Алейникова, Л.Е. Андрианова; Под ред.Е.С. Северин. - М.: ГЭОТАР-МЕД, 2013. - 768 c.

2. Ауэрман, Т.Л. Основы биохимии: Учебное пособие / Т.Л. Ауэрман, Т.Г. Генералова, Г.М. Суслянок. - М.: НИЦ ИНФРА-М, 2013. - 400 c.

3. Базарнова, Ю.Г. Биохимические основы переработки и хранения сырья животного происхождения: Учебное пособие / Ю.Г. Базарнова, Т.Е. Бурова, В.И. Марченко. - СПб.: Просп. Науки, 2011. - 192 c.

4. Баишев, И.М. Биохимия. Тестовые вопросы: Учебное пособие / Д.М. Зубаиров, И.М. Баишев, Р.Ф. Байкеев; Под ред.Д.М. Зубаиров. - М.: ГЭОТАР-Медиа, 2008. - 960 c.

5. Бокуть, С.Б. Биохимия филогенеза и онтогенеза: Учебное пособие / А.А. Чиркин, Е.О. Данченко, С.Б. Бокуть; Под общ. ред.А. А. Чиркин. - М.: НИЦ ИНФРА-М, Нов. знание, 2012. - 288 c.

6. Гидранович, В.И. Биохимия: Учебное пособие / В.И. Гидранович, А.В. Гидранович. - Мн.: ТетраСистемс, 2012. - 528 c.

7. Голощапов, А.П. Генетико-биохимические аспекты адаптации человека к условиям города с развитой химической промышленностью / А.П. Голощапов. - М.: КМК, 2012. - 103 c.

8. Гунькова, П.И. Биохимия молока и молочных продуктов / К.К. Горбатова, П.И. Гунькова; Под общ. ред.К. К. Горбатова. - СПб.: ГИОРД, 2010. - 336 c.

9. Димитриев, А.Д. Биохимия: Учебное пособие / А.Д. Димитриев, Е.Д. Амбросьева. - М.: Дашков и К, 2013. - 168 c.

10. Ершов, Ю.А. Общая биохимия и спорт: Учебное пособие / Ю.А. Ершов. - М.: МГУ, 2010. - 368 c.

11. Ершов, Ю.А. Основы биохимии для инженеров: Учебное пособие / Ю.А. Ершов, Н.И. Зайцева; Под ред.С.И. Щукин. - М.: МГТУ им. Баумана, 2010. - 359 c.

12. Камышников, В.С. Справочник по клинико-биохимической лабораторной диагностике: В 2 томах. В 2-х т. Справочник по клинико-биохимической лабораторной диагностике: В 2 томах / В.С. Камышников. - Мн.: Беларусь, 2012. - 958 c.

13. Клопов, М.И. Биологически активные вещества в физиологических и биохимических процессах в организме животного: Учебное пособие / М.И. Клопов, В.И. Максимов. - СПб.: Лань, 2012. - 448 c.

14. Михайлов, С.С. Спортивная биохимия: Учебник для вузов и колледжей физической культуры / С.С. Михайлов. - М.: Сов. спорт, 2012. - 348 c.

15. Репников, Б.Т. Товароведение и биохимия рыбных товаров: Учебное пособие / Б.Т. Репников. - М.: Дашков и К, 2013. - 220 c.

16. Рогожин, В.В. Биохимия молока и мяса: Учебник / В.В. Рогожин. - СПб.: ГИОРД, 2012. - 456 c.

17. Рогожин, В.В. Биохимия растений: Учебник / В.В. Рогожин. - СПб.: ГИОРД, 2012. - 432 c.

18. Рогожин, В.В. Практикум по физиологии и биохимии растений: Учебное пособие / В.В. Рогожин, Т.В. Рогожина. - СПб.: ГИОРД, 2013. - 352 c.

19. Таганович, А.Д. Патологическая биохимия: Монография / А.Д. Таганович. - М.: БИНОМ, 2013. - 448 c.

20. Филиппович, Ю.Б. Биохимические основы жизнедеятельности человека: Учебное пособие для студентов вузов / Ю.Б. Филиппович, А.С. Коничев, Г.А. Севастьянова, Н.М. Кутузова. - М.: ВЛАДОС, 2005. - 407 c.

21. Щербаков, В.Г. Биохимия и товароведение масличного сырья / В.Г. Щербаков, В.Г. Лобанов. - М.: КолосС, 2012. - 392 c.

Размещено на Allbest.ru

...

Подобные документы

    Классификация, механизм действия ферментов, их применение в практической деятельности человека. Функционирование ферментов ротовой полости, желудка, тонкого кишечника. Определение основных причин нарушения работы пищеварительных органов у подростков.

    курсовая работа , добавлен 05.10.2014

    Методы определения активности, изучение кинетических параметров ферментативных реакций. Методы выделения и очистки ферментов. Изучение субклеточной локализации. Использование ферментов в качестве аналитических реагентов. Определение активности трипсина.

    учебное пособие , добавлен 19.07.2009

    История изучения, функции и классификация ферментов: их медицинское значение и использование в катализируемых реакциях. Связь между ферментами и наследственными болезнями обмена веществ. Разработка методов лечения, их значение в профилактике заболеваний.

    презентация , добавлен 16.04.2012

    История открытия витаминов; их свойства. Химическая структура, механизм биологического действия и теоретическая суточная доза водорастворимых витаминов. Основные особенности группы жирорастворимых витаминов. Хроматографические методы исследования.

    реферат , добавлен 05.07.2014

    Классификация и типы ретровирусов как носителей и активаторов онкогенов: высокоонкогенные, низкоонкогенные, механизм действия. Строение, элементы и цикл развития данных вирусов. T-лимфотропные вирусы человека: эпидемиология, описание, профилактика.

    курсовая работа , добавлен 27.06.2011

    Понятие и классификация ферментов (энзимов). Их общие и отличные от неорганических катализаторов свойства, белковая природа. Катализируемые ими реакции. Виды изоферментов и их роль в обмене веществ. Относительная активность ферментов в тканях человека.

    презентация , добавлен 11.11.2016

    Концепции индукции ферментов подсемейства CYP 3A ксенобиотиками и другими химическими соединениями. Особенности онтогенеза в этом процессе. Генетические аспекты влияющие на активность ферментов подсемейства CYP 3A. Семейства ядерных рецепторов.

    научная работа , добавлен 12.05.2009

    Изучение лекарственных препаратов под общим названием "антибиотики". Антибактериальные химиотерапевтические средства. История открытия антибиотиков, механизм их действия и классификация. Особенности применения антибиотиков и их побочные действия.

    курсовая работа , добавлен 16.10.2014

    Группа пенициллинов - разработка на основе продуктов жизнедеятельности микроорганизмов. Классификация пенициллинов на природные и синтетические. Механизм действия: бактерицидный эффект и роль ферментов. Характеристика спектра активности, фармакокинетика.

    реферат , добавлен 24.01.2012

    Молекулярно-биохимические основы терапевтического действия пептидных препаратов. Механизм действия нейропротекторов. Молекулярный механизм действия актовегина, нимодипина. Ферментные и неферментные антиоксиданты. Общие принципы действия ноотропов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

биологический фермент белковый

Насколько мы знаем в нашем организме действует очень много ферментов, которые способствуют осуществлению обменных процессов (дыхание, пищеварение, мышечное сокращение, фотосинтез), которые и определяют сам процесс жизни. Поэтому препараты стали широко применяться при лечении заболеваний, сопровождающихся гнойно-некротическими процессами, при тромбозах и тромбоэмболиях, нарушениях процессов пищеварения. Ферментные препараты стали находить также применение при лечении онкологических заболеваний.

Ферменты играют довольно важную роль и в проведении многих технологических процессов. Ферменты высокого качества позволяют улучшить технологию, сократить затраты и даже получить новые продукты.

В настоящее время ферменты применяются более чем в 25 отраслях промышленности: это и пищевая промышленность, и фармацевтическая, целлюлозно-бумажная, лёгкая, а так же в сельском хозяйстве.

Целью моего реферата является: подробное исследование понятий фермента и ферментативного катализа (биокатализа).

1) Что же такое ферменты, какую роль они играют?

2) Структура и механизм действия ферментов.

3) Рассмотреть функции ферментов.

4) Принцип действия ферментов.

5) Классификация ферментов.

6) Область применения ферментов.

7) Методы выделения ферментов.

8) Факторы, влияющие на реакции фермента?

1. Что же такое ферменты, какую роль они играют?

Ферменты - это органические вещества белковой природы, которые синтезируются в клетках и во много раз ускоряют протекающие в них реакции, не подвергаясь при этом химическим превращениям. Вещества, оказывающие подобное действие, существуют и в неживой природе и называются катализаторами. Ферменты иногда называют энзимами (от греч. en - внутри, zyme - закваска). Все живые клетки содержат очень большой набор ферментов, от каталитической активности которых зависит функционирование клеток. Практически каждая из множества разнообразных реакций, протекающих в клетке, требует участия специфического фермента. Изучением химических свойств ферментов и катализируемых ими реакций занимается особая, очень важная область биохимии - энзимология.

Многие ферменты находятся в клетке в свободном состоянии, будучи просто растворены в цитоплазме; другие связаны со сложными высокоорганизованными структурами. Есть и ферменты, в норме находящиеся вне клетки; так, ферменты, катализирующие расщепление крахмала и белков, секретируются поджелудочной железой в кишечник. Секретируют ферменты и многие микроорганизмы.

Первые данные о ферментах были получены при изучении процессов брожения и пищеварения. Большой вклад в исследование брожения внес Л. Пастер, однако он полагал, что соответствующие реакции могут осуществлять только живые клетки. В начале 20 в. Э. Бухнер показал, что сбраживание сахарозы с образованием диоксида углерода и этилового спирта может катализироваться бесклеточным дрожжевым экстрактом. Это важное открытие послужило стимулом к выделению и изучению клеточных ферментов. В 1926 Дж. Самнер из Корнеллского университета (США) выделил уреазу; это был первый фермент, полученный в практически чистом виде. С тех пор обнаружено и выделено более 700 ферментов, но в живых организмах их существует гораздо больше. Идентификация, выделение и изучение свойств отдельных ферментов занимают центральное место в современной энзимологии.

Ферменты, участвующие в фундаментальных процессах превращения энергии, таких, как расщепление сахаров, образование и гидролиз высокоэнергетического соединения аденозинтрифосфата (АТФ), присутствуют в клетках всех типов - животных, растительных, бактериальных. Однако есть ферменты, которые образуются только в тканях определенных организмов. Так, ферменты, участвующие в синтезе целлюлозы, обнаруживаются в растительных, но не в животных клетках. Таким образом, важно различать «универсальные» ферменты и ферменты, специфичные для тех или иных типов клеток. Вообще говоря, чем более клетка специализирована, тем больше вероятность, что она будет синтезировать набор ферментов, необходимый для выполнения конкретной клеточной функции.

На сегодняшний день известно свыше 3000 ферментов. Все они обладают рядом специфических свойств, отличающих их от неорганических катализаторов. Только в человеческом организме ежесекундно происходят тысячи ферментативных реакций. Ферменты играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществ организма.

Нужно также отметить, что вся живая природа существует исключительно благодаря биокатализу. Недаром великий русский физиолог, нобелевский лауреат И.П. Павлов назвал ферменты носителями жизни.

2. Структура и механизм действия ферментов

Как и все белки, ферменты синтезируются в виде линейной цепочки аминокислот, которая сворачивается определённым образом. Каждая последовательность аминокислот сворачивается особым образом, и получающаяся молекула (белковая глобула) обладает уникальными свойствами. Несколько белковых цепей могут объединяться в белковый комплекс. Третичная структура белков разрушается при нагревании или воздействии некоторых химических веществ.

Чтобы катализировать реакцию, фермент должен связаться с одним или несколькими субстратами. Белковая цепь фермента сворачивается таким образом, что на поверхности глобулы образуется щель, или впадина, где связываются субстраты. Эта область называется сайтом связывания субстрата.

Рис. 1. Строение фермента

3. Функции ферментов

Ферменты присутствуют во всех живых клетках и способствуют превращению одних веществ(субстратов) в другие (продукты) .

Ферменты выступают в роли катализаторов практически во всех биохимических реакциях, протекающих в живых организмах - ими катализируется более 4000 разных биохимических реакций.

Ферменты играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществ организма.

Подобно всем катализаторам, ферменты ускоряют как прямую, так и обратную реакцию, понижая энергию активации процесса. Химическое равновесие при этом не смещается ни в прямую, ни в обратную сторону.

Отличительной особенностью ферментов по сравнению с небелковыми катализаторами является их высокая специфичность - константа связывания некоторых субстратов с белком может достигать 10? 10 моль/л и менее. Каждая молекула фермента способна выполнять от нескольких тысяч до нескольких миллионов «операций» в секунду.

Например, одна молекула фермента ренина, содержащегося в слизистой оболочке желудка теленка, створаживает около 106 молекул казеиногена молока за 10 мин при температуре 37°C.

При этом эффективность ферментов значительно выше эффективности небелковых катализаторов - ферменты ускоряют реакцию в миллионы и миллиарды раз, небелковые катализаторы - в сотни и тысячи раз.

4. Принцип действия ферментов

Вещество, подвергающееся превращению в присутствии фермента, называют субстратом. Субстрат присоединяется к ферменту, который ускоряет разрыв одних химических связей в его молекуле и создание других; образующийся в результате продукт отсоединяется от фермента.

Ферменты не подвергаются износу во время реакции. Они высвобождаются по завершению реакции и сразу же готовы начать следующую реакцию. Теоретически это может продолжаться бесконечно, по крайней мере, до тех пор, пока они не израсходуют весь субстрат. На практике вследствие их восприимчивости и органического состава, продолжительность существования ферментов ограничена.

По образному выражению, употребляемому в биохимической литературе, фермент подходит к субстрату, как «ключ к замку». Это правило было сформулировано Э. Фишером в 1894 г. исходя из того, что специфичность действия фермента предопределяется строгим соответствием геометрической структуры субстрата и активного центра фермента. Фермент соединяется с субстратом с образованием короткоживущего фермент-субстратного комплекса (образования промежуточного комплекса). Однако, хотя эта модель объясняет высокую специфичность ферментов, она не объясняет явления стабилизации переходного состояния, которое наблюдается на практике. В 50-е годы нашего столетия это статическое представление было заменено гипотезой Д. Кошланда об индуцированном соответствии субстрата и фермента. Сущность ее сводится к тому, что пространственное соответствие структуры субстрата и активного центра фермента создается в момент их взаимодействия друг с другом, что может быть выряжено формулой «перчатка-рука». Ферменты, в основном, - не жесткие, а гибкие молекулы. Активный центр фермента может изменить конформацию после связывания субстрата. Боковые группы аминокислот активного центра принимают такое положение, которое позволяет ферменту выполнить свою каталитическую функцию. В некоторых случаях молекула субстрата также меняет конформацию после связывания в активном центре. В отличие от модели «ключ-замок», модель индуцированного соответствия объясняет не только специфичность ферментов, но и стабилизацию переходного состояния.

Но в процессе всё большего развития науки гипотеза Кошланда постепенно вытесняется гипотезой топохимического соответствия. Сохраняя основные положения гипотезы взаимоиндуцированной настройки субстрата и фермента, она фиксирует внимание на том, что специфичность действия ферментов объясняется в первую очередь узнаванием той части субстрата, которая не изменяется при катализе. Между этой частью субстрата и субстратным центром фермента возникают многочисленные точечные гидрофобные взаимодействия и водородные связи.

5. Классификация ферментов

Сейчас известно около 2 тысяч ферментов, но список этот не закончен. В зависимости от типа катализируемой реакции все ферменты подразделяются на 6 классов:

Ш Ферменты, катализирующие окислительно-восстановительные реакции оксидоредуктазы;

Ш Ферменты переноса различных группировок (метильных, амино- и фосфогрупп и другие) - трансферазы.

Ш Ферменты, осущевствляющие гидролиз химических связей - гидролазы

Ш Ферменты не гидролитического отщепления от субстрата различных группировок (NH3, CO2, H2O и другие) - лиазы.

Ш Ферменты, ускоряющие синтез связей в биологических молекулах при участии доноторов энергии, например АТФ, - лигазы.

Ш Ферменты, катализирующие превращение изомеров друг в друга, - изомеразы.

Оксидоредуктазы - это ферменты, катализирующие окислительно-восстановительные процессы в организме. Они осущевствляют перенос водорода и электронов и по своим привиальным названием известны как дегидрогеназы, оксидазы и пероксидазы. Эти ферменты отличаются тем, что имеют специфические коферменты и простетические группы. Их подразделяют на функциональные группы доноров, от которых они принимают водород или электроны, и акцепторов, на которые они их передают (на СН-ОН группу, СН - NH группу, C-NH группу и другие).

Трансферазы - это ферменты, переносящие атомные группы (в зависимости от того, перенос какой группы они осуществляют, их соответственно называют). Трансферазы благодаря разнообразию переносимых ими остатков принимают участие в промежуточном обмене веществ.

Гидролазы - это ферменты, катализирующие гидролитическое расщепление различных субстратов (при участии молекул воды). В зависимости от этого среди них различают эстеразы, расщипляющие сложноэфирную связь между карбоновыми кислотами (липаза) тиоловых эфиров, фосфоэфирную связь и так далее; гликозидазы, расщепляющие гликозидные связи, пептид - гидролазы, действует на пептидную связь и другие.

Лиазы - к этой группе относятся ферменты, способные отщеплять различные группы от субстрата не гидролитическим путём с образованием двойных связей или, напротив, присоединять группы к двойной связи. При расщеплении образуется Н2О или СО2 или большие остатки - например ацетил - СоА. Лиазы играют весьма важную роль в процессе обмена веществ.

Изомеразы - ферменты, катализирующие превращение изомерных форм друг в друга, то - есть осуществляющие внутримолекулярное превращение различных групп. К ним относятся не только ферменты, стимулирующие реакции взаимных переходов оптических и геометрических изомеров, но и такие, которые могут способствовать превращению альдоз в кетозы.

Лигазы. Раньше эти ферменты не отделяли от лиаз, так как реакция последних часто идёт в двух направлениях, однако недавно было выяснено, что синтез и распад в большинстве случаев происходит под влиянием различных ферментов, и на этом основании выделен отдельный класс лигаз (синтетаз). Ферменты, обладающие двойным действием, получили название бифункциональных. Лигазы принимают участие в реакции соединения двух молекул, то есть синтетических процессах, сопровождающихся расщеплением макроэнергитических связей АТФ или других макроэргов.

«Первое подразделение ферментов на самые крупные группы (6 классов) основано не на названии субстрата, а на природе химической реакции, которую фермент катализирует. Далее, внутри классов ферменты делят на подклассы, руководствуясь строением субстрата. В подклассы объединяют ферменты данного класса, действующие на сходно построенные субстраты. На этом деление не заканчивается. Ферменты каждого подкласса разбивают на подклассы, в которых ещё строже уточняют структуру химических групп, отличающих субстраты друг от друга. Подкласс это последняя низшая ступень классификации. Внутри подклассов перечисляют уже отдельные ферменты.

6. Область применения ферментов

Обладая высокой степенью избирательности, ферменты используются живыми организмами для осуществления с высокой скоростью огромного разнообразия химических реакций; они сохраняют свою активность не только в микропространстве клетки, но и вне организма. Ферменты нашли широкое применение в таких отраслях промышленности, как хлебопечение, пивоварение, виноделие, чайное, кожевенное и меховое производства, сыроварение, кулинария (для обработки мяса) и т.д. В последние годы ферменты стали применять в тонкой химической индустрии для осуществления таких реакций органической химии, как окисление, восстановление, дезамини-рование, декарбоксилирование, дегидратация, конденсация, а также для разделения и выделения изомеров аминокислот L-ряда (при химическом синтезе образуются рацемические смеси L- и D-изомеров), которые используют в промышленности, сельском хозяйстве, медицине. Овладение тонкими механизмами действия ферментов, несомненно, предоставит неограниченные возможности получения в огромных количествах и с большой скоростью полезных веществ в лабораторных условиях почти со 100% выходом. В настоящее время развивается новая отрасль науки - промышленная энзимология, являющаяся основой биотехнологии. Фермент, ковалентно присоединенный («пришитый») к любому органическому или неорганическому полимерному носителю (матрице), называют иммобилизованным. Техника иммобилизации ферментов допускает решение ряда ключевых вопросов энзимологии: обеспечение высокой специфичности действия ферментов и повышения их стабильности, простоту в обращении, возможность повторного использования, применение их в синтетических реакциях в потоке. Применение подобной техники в промышленности получило название инженерной энзимологии. Ряд примеров свидетельствует об огромных возможностях инженерной энзимологии в различных областях промышленности, медицины, сельского хозяйства. В частности, иммобилизованную в-галактозидазу, присоединенную к магнитному стержню-мешалке, используют для снижения содержания молочного сахара в молоке, т.е. продукта, который не расщепляется в организме больного ребенка с наследственной непереносимостью лактозы. Обработанное таким образом молоко, кроме того, хранится в замороженном состоянии значительно дольше и не подвергается загустеванию. Разработаны проекты получения пищевых продуктов из целлюлозы, превращения ее с помощью иммобилизованных ферментов - целлюлаз - в глюкозу, которую можно превратить в пищевой продукт - крахмал. С помощью ферментной технологии в принципе можно также получить продукты питания, в частности углеводы, из жидкого горючего (нефти), расщепив его до глицеральдегида, и далее при участии ферментов синтезировать из него глюкозу и крахмал. Несомненно, имеет большое будущее моделирование при помощи инженерной энзимологии процесса фотосинтеза, т.е. природного процесса фиксации СО2; помимо иммобилизации, этот жизненно важный для всего человечества процесс потребует разработки новых оригинальных подходов и применения ряда специфических иммобилизованных коферментов. В качестве примера иммобилизации ферментов и использования их в промышленности приводим схему непрерывного процесса получения аминокислоты аланина и регенерации кофермента (в частности, НАД) в модельной системе (Рис. 2). В этой системе исходный субстрат (молочная кислота) подается при помощи насоса в камеру-реактор, содержащий иммобилизованные на декстране НАД+ и две НАД-зависимые дегидрогеназы: лактат- и аланиндегидрогеназы; с противоположного конца реактора продукт реакции - аланин - удаляется с заданной скоростью.

Рис. 2. Схема непрерывного процесса получения аминокислоты

Подобные реакторы нашли применение в фармацевтической промышленности, например при синтезе из гидрокортизона антиревматоидного препарата преднизолона. Кроме того, они могут служить моделью для применения с целью синтеза и получения незаменимых факторов, поскольку при помощи иммобилизованных ферментов и коферментов можно направленно осуществлять сопряженные химические реакции (включая биосинтез незаменимых метаболитов), устраняя тем самым недостаток в веществах при наследственных пороках обмена. Таким образом, при помощи нового методологического подхода наука делает свои первые шаги в области «синтетической биохимии». Не менее важными направлениями исследований являются иммобилизация клеток и создание методами генотехники (генного инженерного конструирования) промышленных штаммов микроорганизмов - продуцентов витаминов и незаменимых аминокислот. В качестве примера медицинского применения достижений биотехнологии можно привести иммобилизацию клеток щитовидной железы для определения тиреотропного гормона в биологических жидкостях или тканевых экстрактах. На очереди - создание биотехнологического способа получения некалорийных сластей, т.е. пищевых заменителей сахара, которые могут создавать ощущение сладости, не будучи высококалорийными. Одно из подобных перспективных веществ - аспартам, который представляет собой метиловый эфир дипептида - аспартилфенилаланина (см. ранее). Аспартам почти в 300 раз слаще сахара, безвреден и в организме расщепляется на естественно встречающиеся свободные аминокислоты: аспарагиновую кислоту (аспар-тат) и фенилаланин. Аспартам, несомненно, найдет широкое применение как в медицине, так и в пищевой промышленности (в США, например, его используют для детского питания и добавляют вместо сахара в диетическую кока-колу). Для производства аспартама методами генотехники необходимо получить не только свободную аспарагиновую кислоту и фе-нилаланин (предшественники), но и бактериальный фермент, катализирующий биосинтез этого дипептида. Значение инженерной энзимологии, как и вообще биотехнологии, возрастет в будущем. По подсчетам специалистов, продукция всех биотехнологических процессов в химической, фармацевтической, пищевой промышленности, в медицине и сельском хозяйстве, полученная в течение одного года в мире, будет исчисляться десятками миллиардов долларов к 2000 г. В нашей стране уже к 2000 г. будет налажено получение методами генной инженерии L-треонина и витамина В2. Уже к 1998 г. предполагается производство ряда ферментов, антибиотиков, б1-, в-, г-интерферонов; проходят клинические испытания препараты инсулина и гормона роста. Гибридомной техникой в стране налажен выпуск реактивов для иммуноферментных методов определения многих химических компонентов в биологических жидкостях.

7. Методы выделения ферментов

Процесс выделения какого-либо белка начинается с переведения белков ткани в раствор. Для этого ткань (материал), из которой получают фермент, тщательно измельчают в гомогенизаторе в присутствии буферного раствора. Для лучшего разрушения клеток к материалу добавляют кварцевый песок, если материал растирают в ступке. В результате получают кашицу - гомогенат. Если не проводилось предварительное фракционирование органоидов клетки, гомогенат содержит обрывки клеток, ядра, хлоропласты и другие органоиды клеток, растворимые пигменты и белки.

При выделении ферментов из тканей живых организмов, в том числе растительных, необходимо соблюдать условия, не вызывающие денатурацию белка. Все работы проводят при пониженной температуре (40 С) и при оптимальных для данного фермента значениях pH среды буферного раствора.

После перевода ферментов из ткани в растворенное состояние гомогенат подвергают центрифугированию для отделения нерастворимой части материала, а затем в отдельных фракциях экстрата-центрифугата выделяют следуемые ферменты.

Так как все ферменты являются белками, то для получения очищенных препаратов ферментов применяются те же способы выделения, что и при работе с белками.

Методы выделения:

· осаждение белка органическими растворителями;

· высаливание;

· метод электрофореза;

· метод ионообменной хроматографии;

· метод центрифугирования;

· метод гельфильтрации;

· метод аффинной хроматографии, или метод хроматографии по сродству;

· избирательная денатурация.

8. Факторы, влияющие на реакции фермента

На активность ферментов, а следовательно и на скорость реакций ферментативного катализа оказывают влияние различные факторы:

Ш Концентрация и доступность субстрата. При постоянном количестве фермента скорость возрастает с увеличением концентрации субстрата. Эта реакция подчинена закону действующих масс и рассматривается в свете теории Михаэлиса - Ментона.

Ш Концентрация фермента. Концентрация ферментов всегда относительно невелика. Скорость любого ферментативного процесса в значительной степени зависит от концентрации фермента. Для большинства пищевых применений скорость реакций пропорциональна концентрации ферментов. Исключение составляют те случаи, когда реакции доводят до очень низких уровней субстрата.

Ш Температура реакции. До некоторого значения температуры (в среднем до 5О°С) каталитическая активность растет, причем на каждые 10°С примерно в 2 раза повышается скорость преобразования субстрата. В общем для ферментов животного происхождения он лежит между 40 и 50°С, а растительного - между 50 и 60°С. Самой оптимальной температурой является 37 o С, при которой в живом организме процессы протекают быстро, сберегая большое количество энергии. Однако есть ферменты с более высоким температурным оптимумом, например, у папаина оптимум находится при 8О°С. В то же время у каталазы оптимальная температура действия находится между 0 и -10°С.

Ш рН реакции. Для каждого фермента характерна определённая область значения рН, при которых фермент проявляет максимальную активность. Однако наилучшими условиями их функционирования являются близкое к нейтральному значение величины рН. В резко кислой или резко щелочной среде хорошо работают лишь некоторые ферменты. Влияние рН среды на действия ферментов основано на том, что происходит изменение заряда различных групп белка в активном центре фермента, вызывающее существенное изменение конформации полипептидной цепи.

Ш Продолжительность процесса. Для реакции ферментативного катализа первого порядка скорость реакции со временем уменьшается, так как уменьшается доступность субстрата. Такие реакции ферментативного катализа требуют достаточно много времени для её завершения.

Ш Наличие ингибиторов или активаторов. Химические вещества, способные оказывать вредное воздействие на реакцию ферментации, получили названия «ингибиторы». В качестве таких веществ могут выступать металлы (медь, железо, кальций) или соединения из субстратов. Некоторые вещества способны активировать или стабилизировать ферменты. Присутствие в реакционной среде некоторых ионов может активировать образование активного субстрат ферментного комплекса, и в этом случае скорость ферментативной реакции будет увеличивается. Такие вещества получили название активаторов.

Заключение

В данном реферате мы рассмотрели одно из биологически активных веществ, а именно - ферменты. Ферменты являются биологическим катализатором белковой природы, ускоряющим химические реакции в живых организмов и вне их. Ферменты обладают уникальными свойствами, которые отличают их от обычных органических катализаторов. Это, прежде всего, необычно высокая каталитическая активность. Другое важнейшее свойство ферментов - это избирательность их действия.

Важным свойством ферментов, которое необходимо учитывать при их практическом пользовании, является стабильность, т.е. их способность сохранять каталитическую активность.

Благодаря высокой специфичности ферментов в организме не воцаряется хаос: каждый фермент выполняет строго отведённые ему функции, не влияя на течение многих десятков и сотен других реакций, происходящих в его окружении. Роль ферментов в жизнедеятельности организмов велика.

Будущее ферментов очень интересно. Технология обнаружения и производства новых ферментов развивается с большой скоростью. Прежде применение и производство ферментов развивалось большей частью за счет попыток и ошибок. Так как детали, влияющие на химию и действие ферментов, были известны плохо, то в препаратах использовались смеси наиболее универсальных ферментов. Благодаря новым исследованиям при производстве сбываемой продукции возможно использование более специфичных ферментов.

Сегодня развивающиеся технологии с каждым днем раскрывают все новые чудеса сотворения жизни, и «биомиметика» как наука избирает примерами превосходные системы в организмах живых существ, создавая по их образу и подобию изобретения для пользы и блага людей. Учёные попытаются найти химические аналоги ферментов и на их основе создать новые промышленные процессы.

Литература

1. «Биофизическая химия» / А.Г. Пасынский [Текст] -375 с.

2. Нечаев А.П., Кочеткова А.А, Зайцев А.Н. / Пищевые добавки [Текст] // М., 2001. - 232 с.

3. «Основы биохимии» / Г.А. Смирнова. [Текст] -278 с.

4. «Ферменты-двигатели жизни» / В.И. Розенгарт. [Текст] -378 с.

5. «Энциклопедический словарь юного биолога» / М.С. Гиляров. [Текст] -488 с.

Размещено на Allbest.ru

...

Подобные документы

    Характеристика ферментов, органических катализаторов белковой природы, которые ускоряют реакции, необходимые для функционирования живых организмов. Условия действия, получение и применение ферментов. Болезни, связанные с нарушением выработки ферментов.

    презентация , добавлен 19.10.2013

    Классификация ферментов, их функции. Соглашения о наименовании ферментов, структура и механизм их действия. Описание кинетики односубстратных ферментативных реакций. Модели "ключ-замок", индуцированного соответствия. Модификации, кофакторы ферментов.

    презентация , добавлен 17.10.2012

    Химический состав, природа и структура белков. Механизм действия ферментов, виды их активирования и ингибирования. Современная классификация и номенклатура ферментов и витаминов. Механизм биологического окисления, главная цепь дыхательных ферментов.

    шпаргалка , добавлен 20.06.2013

    Исследование биологической роли ферментов в механизмах взаимодействия адренергической и пептидергической систем. Определение активности ферментов флюорометрическим методом. Изучение гипофиза, гипоталамуса, больших полушарий и четверохолмия самцов крыс.

    статья , добавлен 01.09.2013

    Определение ферментов как специфических белков, присутствующих во всех живых клетках биологических катализаторов. Пространственность структурной молекулы ферментов, процесс биосинтеза оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы.

    контрольная работа , добавлен 27.01.2011

    Понятие ферментов как глобулярных белков, которые состоят из одной или нескольких полипептидных цепей. Особенности строения простых и сложных ферментов. Субстратный, аллостерический и каталитический центры в строении простых и сложных ферментов.

    презентация , добавлен 07.02.2017

    Ферменты (энзимы) – каталитические белки. Характеристика, функция и принципы строения ферментов. Условия максимальной активности, кофакторы и коферменты. Распределение ферментов в организме. Диагностическое значение маркерных, секреторных и изоферментов.

    презентация , добавлен 28.11.2015

    Биологическое значение, классификация, изучение и регуляция каталитической активности ферментов биологической мембраны, их отличия от растворимых ферментов. Методы реконструкции белка. Функции липидов и методы изучения их влияния на мембранные ферменты.

    курсовая работа , добавлен 13.04.2009

    Характеристика биосинтеза как процесса образования органических веществ, происходящего в клетках с помощью ферментов и внутриклеточных структур. Участники биосинтеза белка. Синтез РНК с использованием ДНК в качестве матрицы. Роль и значение рибосом.

    презентация , добавлен 21.12.2013

    Ферменты, или энзимы - белковые молекулы или их комплексы, ускоряющие химические реакции в живых системах; коферменты и субстраты: история изучения, классификация, номенклатура, функции. Структура и механизм действия ферментов, их биомедицинское значение.


Впервые термин "фермент" предложил голландский естествоиспытатель Ван-Гельмонт, обозначивший им неизвестный агент, способствующий спиртовому брожению. В переводе с латинского языка фермент означает «закваска», синоним этого слова в греческом языке - энзим, что означает «в дрожжах». Оба слова связаны с дрожжевым брожением, которое невозможно без участия ферментов, играющих ключевую роль в бродильных процессах - химических реакциях, связанных с перевариванием и расщеплением сахаров. По своей природе ферменты являются биологическими катализаторами химических и биохимических реакций, которые протекают внутри клеток. Химические реакции могут протекать и без участия ферментов, но часто для этого требуются определенные условия: высокая температура, давление, присутствие металлов (железа, цинка, меди и платины и т.д.), которые также могут выступать в качестве катализаторов - ускорителей химических реакций, но скорость их без ферментов будет очень небольшой.

Ферменты в нашем организме выступают в роли биологических катализаторов, ускоряя биохимические реакции в сотни и тысячи раз, они способствуют полноценному пищеварению, усвоению питательных веществ и очищению организма. Ферменты принимают участие в осуществлении практически всех процессов жизнедеятельности организма: способствуют восстановлению эндоэкологического баланса, поддерживают систему кроветворения, снижают тромбообразование, нормализуют вязкость крови, улучшают микроциркуляцию, а также снабжение тканей кислородом и питательными веществами, нормализуют липидный обмен, снижают синтез холестерина низкой плотности. Во всех жизненно важных биохимических реакциях участвуют более трех тысяч известных к настоящему времени ферментов. Ферментная недостаточность, вызванная генетическими нарушениями или иными физиологическими причинами, приводит к нарушению здоровья и серьезным заболеваниям.

Многие ферменты могут работать как разрушители и восстановители, в зависимости от обстоятельств, расщепляя биомолекулы на фрагменты или вновь соединяя вместе продукты распада. В человеческом организме непрерывно работают тысячи различных ферментов. Только с их помощью возможно обновление клеток, трансформация питательных веществ в энергию и строительные материалы, обезвреживание отходов метаболизма и чужеродных веществ, защита организма от болезнетворных микроорганизмов и заживление ран. В зависимости от того, какие виды реакций организма катализируют энзимы, они выполняют различные функции, чаще всего их подразделяют на пищеварительные и метаболические .

Пищеварительные выделяются в желудочно-кишечном тракте, разрушают питательные вещества, способствуя их попаданию в системный кровоток. Только при наличии ферментов происходит метаболизм жиров, белков и углеводов. Ферменты никогда не заменяют друг друга, каждый из них имеет свою функцию, основными пищеварительными ферментами являются амилаза , протеаза илипаза .

*Амилаза - гидролитический фермент, образуется преимущественно в слюнных железах и поджелудочной железе, поступает затем соответственно в полость рта или просвет двенадцатиперстной кишки и способствует утилизации глюкозы из крови. Амилаза участвует в переваривании углеводов пищи, разлагает сложные углеводы - крахмал и гликоген, обеспечивает сохранение нормальных показателей сахара крови. В настоящее время доказано, что 86% больных сахарным диабетом имеют недостаточное содержание амилазы в кишечнике. Различные типы амилаз действуют на определенные сахара: лактаза расщепляет молочный сахар - лактозу, мальтаза - мальтозу, сукраза расщепляет свекловичный сахар сахарозу.

*Липаза присутствует в желудочном соке, в секрете поджелудочной железы, а также в пищевых жирах и является важнейшим ферментом в процессе переваривания жиров, она синтезируется в поджелудочной железе и выделяется в кишечник, где расщепляет жиры, поступающие с пищей и гидролизирует молекулы жиров. Активность липазы значительно изменяется при заболеваниях поджелудочной железы, при онкологических заболеваниях и при неправильном питании.

Метаболические ферменты (энзимы) катализируют биохимические процессы внутри клеток, при которых происходит как выработка энергии, так и детоксикация организма и вывод отработанных продуктов распада. Каждая система, орган и ткань организма имеет свою сеть ферментов.

Ферменты и обмен веществ

Обмен веществ в организме человека складывается из двух процессов. Первый процесс - «анаболизм», что означает усвоение необходимых веществ и энергии. Второй процесс - «катаболизм» - распад отработанных продуктов жизнедеятельности организма. Эти важнейшие процессы находятся в постоянном взаимодействии, поддерживая жизнедеятельность организма.

*Нервная система - первая регулирующая система поддержания равновесия обменных процессов, она обрабатывает информацию, поступающую от всех систем, органов и тканей организма. Учитывая характер информации обменных процессов, нервная система принимает то или иное решение, задает ту или иную программу действия.

*Эндокринная система - вторая регулирующая система, благодаря вырабатываемым ею гормонам, активизируются или замедляются все процессы, протекающие в органах и тканях организма.

*Кровеносная система - третья система, регулирующая обмен веществ, поскольку посредством крови производится перенос гормонов и питательных веществ - витаминов, макроэлементов и минеральных солей.

Все эти системы реализуют свою программу через цепочку различных ферментов, благодаря которым человек может адекватно адаптироваться к изменяющимся условиям внешней и внутренней среды. Все ферменты являются белками, состоящими из аминокислот, небелковая часть молекулы фермента называется «коферментом», в неё могут входить микроэлементы и витамины. Все биохимические реакции с участием ферментов происходят в водной среде, в которой, как в коконе, находится наш организм. Часть ферментов входит в состав плазматической мембраны клеток, другие находятся и работают внутри клеток, третьи секретируются клетками и выходят в межклеточное пространство органов и тканей, попадают в кровеносную и лимфатическую систему или в просвет желудка, тонкой и толстой кишки.

Благодаря действию ферментов организм запасается железом, кровь свертывается при кровотечениях, мочевая кислота превращается в мочу, окись углерода удаляется из легких. Ферменты помогают печени, почкам, легким и желудочно-кишечному тракту выводить из организма продукты жизнедеятельности и токсины, способствуют использованию питательных веществ, построению новых мышечных тканей, нервных клеток, костей, кожи, восстановлению тканей желез внутренней секреции.

Ферменты принимают участие в осуществлении практически всех процессов жизнедеятельности организма: способствуют восстановлению экологического баланса организма, улучшают работу иммунной системы, регулируют выработку интерферонов, проявляют противовирусное и противомикробное действие, снижают вероятность развития аллергических и аутоиммунных реакций. Они также оказывают поддержку системе кроветворения, снижают агрегацию тромбоцитов, нормализуют вязкость крови, улучшают микроциркуляцию, а также снабжение тканей кислородом и питательными веществами. Комплексное воздействие ферментов улучшает процесс переваривания и усвоения пищи, нормализует липидный обмен, снижает синтез холестерина, повышает содержание холестерина высокой плотности, а также уменьшает побочные эффекты, связанные с приемом антибиотиков и гормональных препаратов.

Ферменты, коэнзимы и микроэлементы

В организме человека насчитывают около 3000 различных ферментов, структура которых закодирована в генетике каждого индивидуума. Основной функциональной характеристикой каждого фермента является скорость, с которой он работает, разрушая, трансформируя или синтезируя те или иные вещества. Функции ферментов строго индивидуальны и каждый из них принимает участие в активизации конкретного биохимического процесса. Со временем ферменты теряют свою эффективность и поэтому должны постоянно обновляться. Активность ферментов зависит от очень многих внешних факторов: при понижении температуры скорость химических реакций уменьшается, при повышении температуры скорость химических реакций сначала увеличивается, но затем начинает уменьшаться, поскольку при высоких температурах, близких к кипению, происходит денатурация - разрушение белковых молекул фермента. В состав ферментов входят некоторые микроэлементы - медь, железо, цинк, никель, селен, кобальт, марганец и др. Без молекул минеральных веществ ферменты не активны и не могут катализировать биохимические реакции. Активация ферментов происходит посредством присоединения к их молекулам атомов минеральных веществ, при этом присоединенный атом неорганического вещества становится активным центром всего ферментативного комплекса, например:

*Железо входит в состав важных окислительных ферментов - каталазы, пероксидазы, цитохромов углерода и азота, оно соединяет между собой атомы, благодаря чему из аминокислот образуются белковые молекулы, кроме того, железо из молекулы гемоглобина способно связывать кислород, чтобы переносить его к тканям;

*Цинк способен соединять между собой атомы кислорода и азота, а также атомы серы, поэтому пищеварительные ферменты пепсин и трипсин для активации требуют присоединения атома цинка;

*Медь обладает способностью разрывать или восстанавливать связи между атомами углерода и серы;

*Кобальт способен и разрушать, и восстанавливать химическую связь между атомами углерода;

*Молибден входит в состав азотфиксирующих ферментов и способен переводить в связанное состояние атмосферный азот, который является достаточно инертным веществом и с большим трудом вступает в биохимические реакции.

Многие ферменты с большой молекулярной массой проявляют каталитическую активность только в присутствии специфических низкомолекулярных веществ, называемых коферментами (коэнзимами), роль коэнзимов играют многие витамины и минеральные вещества, которые входят в состав активного центра фермента и обеспечивают его работу. Особую роль в организме человека играет коэнзим Q10 - непосредственный участник процессов, направленных на выработку энергии в организме человека. Коэнзим Q10 представляет собой клеточный компонент, участвующий в производстве энергии в митохондриях - внутриклеточных электростанциях, и играет важную роль в образовании организмом аденозинтрифосфорной кислоты (АТФ), являющейся первоисточником энергии в мышечных тканях. Коэнзим Q10 повышает устойчивость мышечной ткани к пиковым нагрузкам, снижает токсический и болевой эффект гипоксии, ускоряет обменные процессы и выведение конечных продуктов обмена веществ. По результатам экспериментальных и клинических исследований сделаны выводы о том, что Коэнзим Q10 также обладает свойствами эффективного антиоксиданта и защитника от преждевременного старения, он способен не только продлить жизнь, но и насытить ее энергией.

Учитывая сказанное выше, можно сделать выводы, что для полноценной функции ферментов необходимо постоянное и непрерывное поступление в организм витаминов, макро- и микроэлементов в составе пищи. Только в этом случае ферменты и ферментные системы организма будут успешно функционировать.

КЛИНИЧЕСКИЕ ИСПЫТАНИЯ ФЕРМЕНТОВ

Исследования последних десятилетий доказали, что ферменты необходимы для нормального функционирования иммунной системы организма: они регулируют выработку интерферонов, проявляют противовирусное и противомикробное действие, а также снижают вероятность развития аллергических и аутоиммунных реакций. Защитные механизмы способны сохранить организм человека здоровым только в том случае, если в организме имеется достаточное количество функционирующих ферментов. Каждый фермент в организме выполняет свою задачу: одни ферменты позволяют организму защищаться путем активизации макрофагов - лейкоцитов, способных распознавать и уничтожать в организме врагов. Другие ферменты помогают лимфоцитам создавать специфические антитела, которые связывают «чужеродных агентов» - бактериальных, вирусных и прочих, давая организму возможность своевременно их обезвредить. Важнейшую роль в здоровье иммунной системы играют протеолитические ферменты, в частности, протеаза , которая активно участвует в процессах метаболизма и пищеварения, она способна разрушать практически любые белки, которые не являются компонентами живых клеток организма - белковые структуры вирусов, бактерий и прочих патогенов. Протеазные ферменты оказались великолепной противовирусной терапией, работающей на нескольких уровнях. Многие вирусы окружены защитной протеиновой оболочкой, которую протеаза способна переварить, в результате вирусы становятся более уязвимыми к действию антивирусных препаратов. Кроме того, протеаза расщепляет непереваренный белок, клеточные обломки и токсины крови, в результате иммунная система активизируется к борьбе с бактериальными и вирусными инфекциями.

Самая распространенная хроническая вирусная инфекция человека - герпес, в переводе с греческого языка - «ползучий», еще Геродот использовал это название при описании пузырьковых высыпаний на коже, сопровождающихся зудом и лихорадкой. Статистика утверждает, что 90% населения Земли являются носителями герпетической инфекции. Герпетическая инфекция длительно существует в организме преимущественно в латентной форме и проявляется на фоне иммунодефицитных состояний поражениями кожи, слизистых оболочек, глаз, печени и центральной нервной системы.

В 1995 европейскими учеными впервые были опубликованы результаты исследования ферментной терапии в качестве альтернативного лечения герпеса Зостер - вируса ветрянки и опоясывающего лишая. Исследования проводились с группой из 192 пациентов, половина которой получала стандартный противовирусный препарат Ацикловир, а вторая половина - ферментную терапию. В результате исследований был сделан вывод о том, что в целом ферментные препараты показали эффективность, идентичную действию ацикловира. С 1968 года в западных странах вирус герпеса Зостер успешно лечится с помощью ферментов.

Заключение: Ферменты имеют широкий спектр применения и могут быть рекомендованы не только для улучшения пищеварения, при острых и хронических воспалительных процессах в желудочно-кишечном тракте и печени, но и при инфекционных заболеваниях, сосудистой патологии, состояниях до и после оперативных вмешательств. На сегодняшний день проводятся многочисленные исследования, подтверждающие эффективность ферментов в профилактике и оздоровлении при онкозаболеваниях.

компании Nutricare рекомендуется:

Для полноценного усвоения белковой пищи: Папаин, Бромелайн, Протеаза улучшают самочувствие при различных заболеваниях пищеварительного тракта, расщепляют сложные белки до аминокислот, Протеаза также способна разрушать практически любые белки, которые не являются компонентами живых клеток организма - белковые структуры вирусов, бактерий и прочих патогенов;

Для полноценного усвоения жиров: Бромелайн и Липаза выделяются в кишечник, где расщепляют жиры, поступающие с пищей, кроме того, Бромелайн воздействует на молекулы жировой ткани, не позволяя им связываться между собой и откладываться в жировое депо и участвует в расщеплении жиров, что делает его незаменимым при лечении ожирения;

Для полноценного усвоения углеводов: Амилаза участвует в переваривании углеводов пищи, разлагает сложные углеводы - крахмал и гликоген, обеспечивает сохранение нормальных показателей сахара крови. В настоящее время доказано, что 86% больных сахарным диабетом имеют недостаточное содержание амилазы в кишечнике;

При заболеваниях желудочно-кишечного тракта(запоры, гастрит, колит, язвенная болезнь желудка, глистные инвазии): Ферментный комплекс необходим для восстановления пищеварения при ферментной недостаточности, дисбактериозе, диспепсии и практически при всех заболеваниях органов пищеварения.