Способы разложения числа на множители. Как разложить число на произведение простых множителей. Формулы сокращенного умножения

Разложим число 120 на простые множители

120 = 2 ∙ 2 ∙ 2 ∙ 3 ∙ 5

Решение
Разложим число 120

120: 2 = 60
60: 2 = 30 - делится на простое число 2
30: 2 = 15 - делится на простое число 2
15: 3 = 5
Завершаем деление, так как 5 простое число

Ответ: 120 = 2 ∙ 2 ∙ 2 ∙ 3 ∙ 5

Разложим число 246 на простые множители

246 = 2 ∙ 3 ∙ 41

Решение
Разложим число 246 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом

246: 2 = 123 - делится на простое число 2
123: 3 = 41 - делится на простое число 3.
Завершаем деление, так как 41 простое число

Ответ: 246 = 2 ∙ 3 ∙ 41

Разложим число 1463 на простые множители

1463 = 7 ∙ 11 ∙ 19

Решение
Разложим число 1463 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом

1463: 7 = 209 - делится на простое число 7
209: 11 = 19
Завершаем деление, так как 19 простое число

Ответ: 1463 = 7 ∙ 11 ∙ 19

Разложим число 1268 на простые множители

1268 = 2 ∙ 2 ∙ 317

Решение
Разложим число 1268 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом

1268: 2 = 634 - делится на простое число 2
634: 2 = 317 - делится на простое число 2.
Завершаем деление, так как 317 простое число

Ответ: 1268 = 2 ∙ 2 ∙ 317

Разложим число 442464 на простые множители

442464

Решение
Разложим число 442464 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом

442464: 2 = 221232 - делится на простое число 2
221232: 2 = 110616 - делится на простое число 2
110616: 2 = 55308 - делится на простое число 2
55308: 2 = 27654 - делится на простое число 2
27654: 2 = 13827 - делится на простое число 2
13827: 3 = 4609 - делится на простое число 3
4609: 11 = 419 - делится на простое число 11.
Завершаем деление, так как 419 простое число

Ответ: 442464 = 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 3 ∙ 11 ∙ 419

Можно представить в виде произведения простых чисел.

Пример. Представим в виде произведения простых множителей числа 4, 6 и 8:

Правые части полученных равенств называются разложением на простые множители.

Это представление составного числа в виде произведения простых множителей.

Разложить составное число на простые множители - значит представить это число в виде произведения простых множителей.

Простые множители в разложении числа могут повторяться. Повторяющиеся простые множители можно записывать более компактно - в виде степени.

Пример.

24 = 2 · 2 · 2 · 3 = 2 3 · 3

Примечание. Простые множители обычно записывают в порядке их возрастания.

Как разложить число на простые множители

Последовательность действий при разложении числа на простые множители:

  1. Проверяем по таблице простых чисел, не является ли данное число простым.
  2. Если нет, то последовательно подбираем самое маленькое простое число из таблицы простых чисел, на которое данное число делится без остатка, и выполняем деление.
  3. Проверяем по таблице простых чисел, не является ли полученное частное простым числом.
  4. Если нет, то последовательно подбираем самое маленькое простое число из таблицы простых чисел, на которое полученное частное делится нацело, и выполняем деление.
  5. Повторяем пункты 3 и 4 до тех пор, пока в частном не получится единица.

Пример. Разложите число 102 на простые множители.

Решение:

Начинаем поиск наименьшего простого делителя числа 102. Для этого последовательно подбираем самое маленькое простое число из таблицы простых чисел, на которое 102 разделится без остатка. Берём число 2 и пробуем разделить на него 102, получаем:

Число 102 разделилось на 2 без остатка, поэтому 2 - первый найденный простой множитель. Так как делимое равно делителю, умноженному на частное, то можно написать:

Переходим к следующему шагу. Проверяем по таблице простых чисел, не является ли полученное частное простым числом. Число 51 составное. Начиная с числа 2, подбираем из таблицы простых чисел наименьший простой делитель числа 51. Число 51 не делится нацело на 2. Переходим к следующему числу из таблицы простых чисел (к числу 3) и пробуем разделить на него 51, получаем:

Число 51 разделилось на 3, поэтому 3 - второй найденный простой множитель. Теперь мы можем и число 51 представить в виде произведения. Этот процесс можно записать так:

102 = 2 · 51 = 2 · 3 · 17

Проверяем по таблице простых чисел, не является ли полученное частное простым числом. Число 17 простое. Значит наименьшим простым числом, на которое делится 17, будет само это число:

Так как в частном у нас получилась единица, то разложение закончено. Таким образом, разложение числа 102 на простые множители имеет вид:

102 = 2 · 3 · 17

Ответ: 102 = 2 · 3 · 17.

В арифметике имеется ещё другая форма записи, облегчающая процесс разложения составных чисел. Она состоит в том, что весь процесс разложения записывают столбиком (в две колонки, разделённых вертикальной чертой). Слева от вертикальной черты, сверху вниз, записывают последовательно: данное составное число, затем получающиеся частные, а справа от черты - соответствующие наименьшие простые делители.

Пример. Разложить на простые множители число 120.

Решение:

Пишем число 120 и справа от него проводим вертикальную черту:

Справа от черты записываем самый маленький простой делитель числа 120:

Выполняем деление и получившееся частное (60) записываем под данным числом:

Подбираем наименьший простой делитель для 60, записываем его справа от вертикальной черты под предыдущим делителем и выполняем деление. Продолжаем процесс до тех пор, пока в частном не получится единица:

В частном у нас получилась единица, значит разложение закончено. После разложения в столбик множители следует выписать в строчку:

120 = 2 3 · 3 · 5.

Ответ: 120 = 2 3 · 3 · 5.

Составное число разлагается на простые множители единственным образом.

Это значит, что если, например, число 20 разложилось на две двойки и одну пятёрку, то оно и всегда будет так разлагаться независимо от того, начнём ли мы разложение с малых множителей или с больших. Принято начинать разложение с малых множителей, т. е. с двоек, троек и т. д.

Новое на сайте | contact@сайт
2018 − 2020 сайт

Любое составное число можно разложить на простые множители. Способов разложения может быть несколько. При любом способе получается один и тот же результат.

Как разложить число на простые множители наиболее удобным способом? Рассмотрим, как это лучше сделать, на конкретных примерах.

Примеры. 1) Разложить число 1400 на простые множители.

1400 делится на 2. 2 — простое число, раскладывать его на множители не нужно. Получаем 700. Делим его на 2. Получаем 350. 350 тоже делим на 2. Полученное число 175 можно разделить на 5. Результат — з5 — еще раз делим на 5. Итого — 7. Его можно разделить только на 7. Получили 1, деление окончено.

Это же число можно разложить на простые множители иначе:

1400 удобно разделить на 10. 10 не является простым числом, поэтому его нужно разложить на простые множители: 10=2∙5. Результат — 140. Его снова делим на 10=2∙5. Получаем 14. Если 14 разделить на 14, то его тоже следует разложить на произведение простых множителей: 14=2∙7.

Таким образом, снова пришли к такому же, как и в первом случае, разложению, но быстрее.

Вывод: не обязательно при разложении числа делить его только на простые делители. Делим на то, что удобнее, например, на 10. Надо только составные делители не забыть разложить на простые множители.

2) Разложить число 1620 на простые множители.

Число 1620 удобнее всего разделить на 10. Поскольку 10 простым числом не является, представляем его в виде произведения простых множителей: 10=2∙5. Получили 162. Его удобно разделить на 2. Результат — 81. Число 81 можно разделить на 3, но на 9 — удобнее. Так как 9 — не простое число, раскладываем его как 9=3∙3. Получили 9. Его также делим на 9 и раскладываем на произведение простых множителей.

Данная статья дает ответы на вопрос о разложении числа на простыне множители. Рассмотрим общее представление о разложении с примерами. Разберем каноническую форму разложения и его алгоритм. Будут рассмотрены все альтернативные способы при помощи использования признаков делимости и таблицы умножения.

Что значит разложить число на простые множители?

Разберем понятие простые множители. Известно, что каждый простой множитель – это простое число. В произведении вида 2 · 7 · 7 · 23 имеем, что у нас 4 простых множителя в виде 2 , 7 , 7 , 23 .

Разложение на множители предполагает его представление в виде произведений простых. Если нужно произвести разложение числа 30 , тогда получим 2 , 3 , 5 . Запись примет вид 30 = 2 · 3 · 5 . Не исключено, что множители могут повторяться. Такое число как 144 имеет 144 = 2 · 2 · 2 · 2 · 3 · 3 .

Не все числа предрасположены к разложению. Числа, которые больше 1 и являются целыми можно разложить на множители. Простые числа при разложении делятся только на 1 и на самого себя, поэтому невозможно представить эти числа в виде произведения.

При z , относящемуся к целым числам, представляется в виде произведения а и b , где z делится на а и на b . Составные числа раскладывают на простые множители при помощи основной теоремы арифметики. Если число больше 1 , то его разложение на множители p 1 , p 2 , … , p n принимает вид a = p 1 , p 2 , … , p n . Разложение предполагается в единственном варианте.

Каноническое разложение числа на простые множители

При разложении множители могут повторяться. Их запись выполняется компактно при помощи степени. Если при разложении числа а имеем множитель p 1 , который встречается s 1 раз и так далее p n – s n раз. Таким образом разложение примет вид a=p 1 s 1 · a = p 1 s 1 · p 2 s 2 · … · p n s n . Эта запись имеет название канонического разложения числа на простые множители.

При разложении числа 609840 получим, что 609 840 = 2 · 2 · 2 · 2 · 3 · 3 · 5 · 7 · 11 · 11 ,его канонический вид будет 609 840 = 2 4 · 3 2 · 5 · 7 · 11 2 . При помощи канонического разложения можно найти все делители числа и их количество.

Чтобы правильно разложить на множители необходимо иметь представление о простых и составных числах. Смысл заключается в том, чтобы получить последовательное количество делителей вида p 1 , p 2 , … , p n чисел a , a 1 , a 2 , … , a n - 1 , это дает возможность получить a = p 1 · a 1 , где a 1 = a: p 1 , a = p 1 · a 1 = p 1 · p 2 · a 2 , где a 2 = a 1: p 2 , … , a = p 1 · p 2 · … · p n · a n , где a n = a n - 1: p n . При получении a n = 1 , то равенство a = p 1 · p 2 · … · p n получим искомое разложение числа а на простые множители. Заметим, что p 1 ≤ p 2 ≤ p 3 ≤ … ≤ p n .

Для нахождения наименьших общих делителей необходимо использовать таблицу простых чисел. Это выполняется на примере нахождения наименьшего простого делителя числа z . При взятии простых чисел 2 , 3 , 5 , 11 и так далее, причем на них делим число z . Так как z не является простым числом, следует учитывать, что наименьшим простым делителем не будет больше z . Видно, что не существуют делителей z , тогда понятно, что z является простым числом.

Пример 1

Рассмотрим на примере числа 87 . При его делении на 2 имеем, что 87: 2 = 43 с остатком равным 1 . Отсюда следует, что 2 делителем не может являться, деление должно производиться нацело. При делении на 3 получим, что 87: 3 = 29 . Отсюда вывод – 3 является наименьшим простым делителем числа 87 .

При разложении на простые множители необходимо пользоваться таблицей простых чисел, где a . При разложении 95 следует использовать около 10 простых чисел, а при 846653 около 1000 .

Рассмотрим алгоритм разложения на простые множители:

  • нахождение наименьшего множителя при делителе p 1 числа a по формуле a 1 = a: p 1 , когда a 1 = 1 , тогда а является простым числом и включено в разложение на множители, когда не равняется 1 , тогда a = p 1 · a 1 и следуем к пункту, находящемуся ниже;
  • нахождение простого делителя p 2 числа a 1 при помощи последовательного перебора простых чисел, используя a 2 = a 1: p 2 , когда a 2 = 1 , тогда разложение примет вид a = p 1 · p 2 , когда a 2 = 1 , тогда a = p 1 · p 2 · a 2 , причем производим переход к следующему шагу;
  • перебор простых чисел и нахождение простого делителя p 3 числа a 2 по формуле a 3 = a 2: p 3 , когда a 3 = 1 , тогда получим, что a = p 1 · p 2 · p 3 , когда не равняется 1 , тогда a = p 1 · p 2 · p 3 · a 3 и производим переход к следующему шагу;
  • производится нахождение простого делителя p n числа a n - 1 при помощи перебора простых чисел с p n - 1 , а также a n = a n - 1: p n , где a n = 1 , шаг является завершающим, в итоге получаем, что a = p 1 · p 2 · … · p n .

Результат алгоритма записывается в виде таблицы с разложенными множителями с вертикальной чертой последовательно в столбик. Рассмотрим рисунок, приведенный ниже.

Полученный алгоритм можно применять при помощи разложения чисел на простые множители.

Во время разложения на простые множители следует придерживаться основного алгоритма.

Пример 2

Произвести разложение числа 78 на простые множители.

Решение

Для того, чтобы найти наименьший простой делитель, необходимо перебрать все простые числа, имеющиеся в 78 . То есть 78: 2 = 39 . Деление без остатка, значит это первый простой делитель, который обозначим как p 1 . Получаем, что a 1 = a: p 1 = 78: 2 = 39 . Пришли к равенству вида a = p 1 · a 1 , где 78 = 2 · 39 . Тогда a 1 = 39 , то есть следует перейти к следующему шагу.

Остановимся на нахождении простого делителя p 2 числа a 1 = 39 . Следует перебрать простые числа, то есть 39: 2 = 19 (ост. 1). Так как деление с остатком, что 2 не является делителем. При выборе числа 3 получаем, что 39: 3 = 13 . Значит, что p 2 = 3 является наименьшим простым делителем 39 по a 2 = a 1: p 2 = 39: 3 = 13 . Получим равенство вида a = p 1 · p 2 · a 2 в виде 78 = 2 · 3 · 13 . Имеем, что a 2 = 13 не равно 1 , тогда следует переходит дальше.

Наименьший простой делитель числа a 2 = 13 ищется при помощи перебора чисел, начиная с 3 . Получим, что 13: 3 = 4 (ост. 1). Отсюда видно, что 13 не делится на 5 , 7 , 11 , потому как 13: 5 = 2 (ост. 3), 13: 7 = 1 (ост. 6) и 13: 11 = 1 (ост. 2). Видно, что 13 является простым числом. По формуле выглядит так: a 3 = a 2: p 3 = 13: 13 = 1 . Получили, что a 3 = 1 , что означает завершение алгоритма. Теперь множители записываются в виде 78 = 2 · 3 · 13 (a = p 1 · p 2 · p 3) .

Ответ: 78 = 2 · 3 · 13 .

Пример 3

Разложить число 83 006 на простые множители.

Решение

Первый шаг предусматривает разложение на простые множители p 1 = 2 и a 1 = a: p 1 = 83 006: 2 = 41 503 , где 83 006 = 2 · 41 503 .

Второй шаг предполагает, что 2 , 3 и 5 не простые делители для числа a 1 = 41 503 , а 7 простой делитель, потому как 41 503: 7 = 5 929 . Получаем, что p 2 = 7 , a 2 = a 1: p 2 = 41 503: 7 = 5 929 . Очевидно, что 83 006 = 2 · 7 · 5 929 .

Нахождение наименьшего простого делителя p 4 к числу a 3 = 847 равняется 7 . Видно, что a 4 = a 3: p 4 = 847: 7 = 121 , поэтому 83 006 = 2 · 7 · 7 · 7 · 121 .

Для нахождения простого делителя числа a 4 = 121 используем число 11 , то есть p 5 = 11 . Тогда получим выражение вида a 5 = a 4: p 5 = 121: 11 = 11 , и 83 006 = 2 · 7 · 7 · 7 · 11 · 11 .

Для числа a 5 = 11 число p 6 = 11 является наименьшим простым делителем. Отсюда a 6 = a 5: p 6 = 11: 11 = 1 . Тогда a 6 = 1 . Это указывает на завершение алгоритма. Множители запишутся в виде 83 006 = 2 · 7 · 7 · 7 · 11 · 11 .

Каноническая запись ответа примет вид 83 006 = 2 · 7 3 · 11 2 .

Ответ: 83 006 = 2 · 7 · 7 · 7 · 11 · 11 = 2 · 7 3 · 11 2 .

Пример 4

Произвести разложение числа 897 924 289 на множители.

Решение

Для нахождения первого простого множителя произвести перебор простых чисел, начиная с 2 . Конец перебора приходится на число 937 . Тогда p 1 = 937 , a 1 = a: p 1 = 897 924 289: 937 = 958 297 и 897 924 289 = 937 · 958 297 .

Второй шаг алгоритма заключается в переборе меньших простых чисел. То есть начинаем с числа 937 . Число 967 можно считать простым, потому как оно является простым делителем числа a 1 = 958 297 . Отсюда получаем, что p 2 = 967 , то a 2 = a 1: p 1 = 958 297: 967 = 991 и 897 924 289 = 937 · 967 · 991 .

Третий шаг говорит о том, что 991 является простым числом, так как не имеет ни одного простого делителя, который не превосходит 991 . Примерное значение подкоренного выражения имеет вид 991 < 40 2 . Иначе запишем как 991 < 40 2 . Отсюда видно, что p 3 = 991 и a 3 = a 2: p 3 = 991: 991 = 1 . Получим, что разложение числа 897 924 289 на простые множители получается как 897 924 289 = 937 · 967 · 991 .

Ответ: 897 924 289 = 937 · 967 · 991 .

Использование признаков делимости для разложения на простые множители

Чтобы разложить число на простые множители, нужно придерживаться алгоритма. Когда имеются небольшие числа, то допускается использование таблицы умножения и признаков делимости. Это рассмотрим на примерах.

Пример 5

Если необходимо произвести разложение на множители 10 , то по таблице видно: 2 · 5 = 10 . Получившиеся числа 2 и 5 являются простыми, поэтому они являются простыми множителями для числа 10 .

Пример 6

Если необходимо произвести разложение числа 48 , то по таблице видно: 48 = 6 · 8 . Но 6 и 8 – это не простые множители, так как их можно еще разложить как 6 = 2 · 3 и 8 = 2 · 4 . Тогда полное разложение отсюда получается как 48 = 6 · 8 = 2 · 3 · 2 · 4 . Каноническая запись примет вид 48 = 2 4 · 3 .

Пример 7

При разложении числа 3400 можно пользоваться признаками делимости. В данном случае актуальны признаки делимости на 10 и на 100 . Отсюда получаем, что 3 400 = 34 · 100 , где 100 можно разделить на 10 , то есть записать в виде 100 = 10 · 10 , а значит, что 3 400 = 34 · 10 · 10 . Основываясь на признаке делимости получаем, что 3 400 = 34 · 10 · 10 = 2 · 17 · 2 · 5 · 2 · 5 . Все множители простые. Каноническое разложение принимает вид 3 400 = 2 3 · 5 2 · 17 .

Когда мы находим простые множители, необходимо использовать признаки делимости и таблицу умножения. Если представить число 75 в виде произведения множителей, то необходимо учитывать правило делимости на 5 . Получим, что 75 = 5 · 15 , причем 15 = 3 · 5 . То есть искомое разложение пример вид произведения 75 = 5 · 3 · 5 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Любое натуральное число можно разложить на произведение простых множителей. Если вы не любите иметь дело с большими числами, такими как 5733, научитесь раскладывать их на простые множители (в данном случае это 3 x 3 x 7 x 7 x 13). Подобная задача часто встречается в криптографии, которая занимается проблемами информационной безопасности. Если вы еще не готовы создать собственную систему безопасной электронной почты, для начала научитесь раскладывать числа на простые множители.

Шаги

Часть 1

Нахождение простых множителей
  1. Начните с исходного числа. Выберите составное число больше 3. Нет смысла брать простое число, так как оно делится лишь на само себя и единицу.

    • Пример: разложим на произведение простых чисел число 24.
  2. Разложим данное число на произведение двух множителей. Найдем два меньших числа, произведение которых равно исходному числу. Можно использовать любые множители, но проще взять простые числа. Один из хороших способов состоит в том, чтобы попробовать поделить исходное число сначала на 2, затем на 3, потом на 5 и проверить, на какие из этих простых чисел оно делится без остатка.

    • Пример: если вы не знаете множителей для числа 24, попробуйте поделить его на малые простые числа. Так вы обнаружите, что данное число делится на 2: 24 = 2 x 12 . Это хорошее начало.
    • Поскольку 2 является простым числом, его хорошо использовать при разложении четных чисел.
  3. Начните строить дерево множителей. Эта простая процедура поможет вам разложить число на простые множители. Для начала проведите от исходного числа две "ветки" вниз. На конце каждой ветки напишите найденные множители.

    • Пример:
  4. Разложите на множители следующую строку чисел. Взгляните на два новых числа (вторая строка дерева множителей). Оба ли они относятся к простым числам? Если одно из них не является простым, также разложите его на два множителя. Проведите еще две ветки и напишите два новых множителя в третьей строке дерева.

    • Пример: 12 не является простым числом, поэтому его следует разложить на множители. Используем разложение 12 = 2 x 6 и запишем его в третьей строке дерева:
    • 2 x 6
  5. Продолжайте двигаться вниз по дереву. Если один из новых множителей окажется простым числом, проводите от него одну "ветку" и пишите на ее конце это же число. Простые числа не раскладываются на меньшие множители, поэтому просто переносите их на уровень ниже.

    • Пример: 2 является простым числом. Просто перенесите 2 из второй в третью строку:
    • 2 2 6
  6. Продолжайте раскладывать числа на множители, пока у вас не останутся одни простые числа. Проверяйте каждую новую строку дерева. Если хоть один из новых множителей не является простым числом, разложите его на множители и запишите новую строку. В конце концов у вас останутся одни простые числа.

    • Пример: 6 не является простым числом, поэтому его также следует разложить на множители. В то же время 2 представляет собой простое число, и мы переносим две двойки на следующий уровень:
    • 2 2 6
    • / / /\
    • 2 2 2 3
  7. Запишите последнюю строку в виде произведения простых множителей. В конце концов у вас останутся одни простые числа. Когда это случится, разложение на простые множители завершено. Последняя строка представляет собой набор простых чисел, произведение которых дает исходное число.

    • Проверьте ответ: перемножьте стоящие в последней строке числа. В результате должно получиться исходное число.
    • Пример: в последней строке дерева множителей содержатся числа 2 и 3. Оба этих числа являются простыми, поэтому разложение завершено. Таким образом, разложение числа 24 на простые множители имеет следующий вид: 24 = 2 x 2 x 2 x 3 .
    • Порядок множителей не имеет значения. Разложение можно записать также в виде 2 x 3 x 2 x 2.
  8. При желании упростите ответ с помощью степенной записи. Если вы знакомы с возведением чисел в степень, можно записать полученный ответ в более простом виде. Помните, что внизу записывается основание, а надстрочное число показывает, сколько раз это основание следует умножить на само себя.

    • Пример: сколько раз встречается число 2 в найденном разложении 2 x 2 x 2 x 3? Три раза, поэтому выражение 2 x 2 x 2 можно записать в виде 2 3 . В упрощенной записи получаем 2 3 x 3.

    Часть 2

    Использование разложения на простые множители
    1. Найдите наибольший общий делитель двух чисел. Наибольшим общим делителем (НОД) двух чисел называется максимальное число, на которое оба числа делятся без остатка. В приведенном ниже примере показано, как с помощью разложения на простые множители найти наибольший общий делитель чисел 30 и 36.

      • Разложим оба числа на простые множители. Для числа 30 разложение имеет вид 2 x 3 x 5. Число 36 раскладывается на простые множители следующим образом: 2 x 2 x 3 x 3.
      • Найдем число, которое встречается в обоих разложениях. Перечеркнем это число в обоих списках и напишем его с новой строки. Например, 2 встречается в двух разложениях, поэтому запишем 2 в новой строке. После этого у нас остается 30 = 2 x 3 x 5 и 36 = 2 x 2 x 3 x 3.
      • Повторяйте это действие, пока в разложениях не останется общих множителей. В оба списка входит также число 3, поэтому в новой строке можно записать 2 и 3 . После этого вновь сравните разложения: 30 = 2 x 3 x 5 и 36 = 2 x 2 x 3 x 3. Как видно, в них не осталось общих множителей.
      • Чтобы найти наибольший общий делитель, следует найти произведение всех общих множителей. В нашем примере это 2 и 3, поэтому НОД равен 2 x 3 = 6 . Это наибольшее число, на которое делятся без остатка числа 30 и 36.
    2. С помощью НОД можно упрощать дроби. Если вы подозреваете, что какую-то дробь можно сократить, используйте наибольший общий делитель. По описанной выше процедуре найдите НОД числителя и знаменателя. После этого поделите числитель и знаменатель дроби на это число. В результате вы получите ту же дробь в более простом виде.

      • К примеру, упростим дробь 30 / 36 . Как мы установили выше, для 30 и 36 НОД равен 6, поэтому поделим числитель и знаменатель на 6:
      • 30 ÷ 6 = 5
      • 36 ÷ 6 = 6
      • 30 / 36 = 5 / 6
    3. Найдем наименьшее общее кратное двух чисел. Наименьшее общее кратное (НОК) двух чисел - это наименьшее число, которое делится без остатка на оба данных числа. Например, НОК 2 и 3 является 6, поскольку это наименьшее число, которое делится на 2 и 3. Ниже приведен пример нахождения НОК с помощью разложения на простые множители:

      • Начнем с двух разложений на простые множители. Например, для числа 126 разложение можно записать как 2 x 3 x 3 x 7. Число 84 раскладывается на простые множители в виде 2 x 2 x 3 x 7.
      • Сравним, сколько раз каждый множитель встречается в разложениях. Выберите тот список, где множитель встречается максимальное число раз, и обведите это место. Например, число 2 встречается один раз в разложении для числа 126 и дважды в списке для 84, поэтому следует обвести 2 x 2 во втором списке множителей.
      • Повторите это действие для каждого множителя. Например, 3 встречается чаще в первом разложении, поэтому следует обвести в нем 3 x 3 . Число 7 встречается по одному разу в обоих списках, так что обводим 7 (неважно в каком списке, если данный множитель встречается в обоих списках одинаковое число раз).
      • Чтобы найти НОК, перемножьте все обведенные числа. В нашем примере наименьшим общим кратным чисел 126 и 84 является 2 x 2 x 3 x 3 x 7 = 252 . Это наименьшее число, которое делится на 126 и 84 без остатка.
    4. Используйте НОК для сложения дробей. При сложении двух дробей необходимо привести их к общему знаменателю. Для этого найдите НОК двух знаменателей. Затем умножьте числитель и знаменатель каждой дроби на такое число, чтобы знаменатели дробей стали равны НОК. После этого можно сложить дроби.

      • Например, необходимо найти сумму 1 / 6 + 4 / 21 .
      • С помощью приведенного выше метода можно найти НОК для 6 и 21. Оно равно 42.
      • Преобразуем дробь 1 / 6 так, чтобы ее знаменатель равнялся 42. Для этого необходимо поделить 42 на 6: 42 ÷ 6 = 7. Теперь умножим числитель и знаменатель дроби на 7: 1 / 6 x 7 / 7 = 7 / 42 .
      • Чтобы привести вторую дробь к знаменателю 42, поделим 42 на 21: 42 ÷ 21 = 2. Умножим числитель и знаменатель дроби на 2: 4 / 21 x 2 / 2 = 8 / 42 .
      • После того как дроби приведены к одинаковому знаменателю, их можно легко сложить: 7 / 42 + 8 / 42 = 15 / 42 .